Облегченный («тёплый») резерв - резервный элемент, находящийся в менее нагруженном режиме, чем основной.
Ненагруженный («холодный») резерв - резервный элемент, практически не несущий нагрузок.
Резервирование общее с постоянным подключением, либо с замещением (рис. 2.13). В этом случае резервируется объект в целом, а в качестве резервного - используется аналогичное сложное устройство. Этот способ менее экономен, чем раздельное резервирование. При отказе, например, первого основного элемента возникает необходимость подключать всю технологическую резервную цепочку.
Рис. 2.13 - Резервирование общее
Резервирование мажоритарное ("голосование" n из m элементов) (рис. 2.14). Этот способ основан на применении дополнительного элемента - его называют мажоритарный или логический или кворум-элемент. Он позволяет вести сравнение сигналов, поступающих от элементов, выполняющих одну и ту же функцию. Если результаты совпадают, тогда они передаются на выход устройства. На рис. 2.14 изображено резервирование по принципу голосования "два из трёх", т.е. любые два совпадающих результата из трёх считаются истинными и проходят на выход устройства. Можно применять соотношения три из пяти и др. Главное достоинство этого способа - обеспечение повышения надёжности при любых видах отказов работающих элементов. Любой вид одиночного отказа элемента не окажет влияния на выходной результат.
Эффективно в системах управления процессами.
Рис. 2.14 - Резервирование мажоритарное
2.2.6 Типовые структуры расчета надёжности
Под структурной схемой надёжности понимается наглядное представление (графическое или в виде логических выражений) условий, при которых работает или не работает исследуемый объект (система, устройство, технический комплекс и т.д.). Типовые структурные схемы представлены на рис. 2.15.
Рис. 2.15 - Типовые структуры расчёта надёжности
Простейшей формой структурной схемы надёжности является параллельно-последовательная структура. На ней параллельно соединяются элементы, совместный отказ которых приводит к отказу. В последовательную цепочку соединяются такие элементы, отказ любого из которых приводит к отказу объекта.
На рис. 2.15,а представлен вариант параллельно-последовательной структуры. По этой структуре можно сделать следующее заключение. Объект состоит из пяти частей. Отказ объекта наступает тогда, когда откажет или элемент 5, или узел, состоящий из элементов 1-4. Узел может отказать тогда, когда одновременно откажет цепочка, состоящая из элементов 3,4 и узел, состоящий из элементов 1,2. Цепь 3-4 отказывает, если откажет хотя бы один из составляющих ее элементов, а узел 1,2 - если откажут оба элемента, т.е. элементы 1,2. Расчёт надёжности при наличии таких структур отличается наибольшей простотой и наглядностью.
В тех случаях, когда условие работоспособности не удаётся представить в виде простой параллельно-последовательной структуры используют или логические функции, или графы и ветвящиеся структуры, по которым оставляются системы уравнений работоспособности.
2.2.6.1 Расчёт надёжности, основанный на использовании параллельно-последовательных структур
На рис. 2.16 представлено параллельное соединение элементов 1, 2, 3. Это означает, что устройство, состоящее из этих элементов, переходит в состояние отказа после отказа всех элементов при условии, что все элементы системы находятся под нагрузкой, а отказы элементов статистически независимы.
Рис. 2.16. Блок-схема системы с параллельным соединением элементов
Условие работоспособности устройства можно сформулировать следующим образом: устройство работоспособно, если работоспособен элемент 1 или элемент 2, или элемент 3, или элементы 1 и 2, 1; и 3, 2; и 3, 1; и 2; и 3.
Вероятность безотказного состояния устройства, состоящего из n параллельно соединённых элементов определяется по теореме сложения вероятностей совместных случайных событий как
,т.е. при параллельном соединении независимых (в смысле надёжности) элементов их ненадёжности (
) перемножаются.Интенсивность отказов (при интенсивности отказов элементов λi), определяется как
.В случае, когда интенсивности отказов всех элементов одинаковы, среднее время безотказной работы системы Т0
.В данной схеме включения n одинаковых образцов оборудования только один находится все время в работе (рис. 2.17). Когда работающий образец выходит из строя, его непременно отключают, и в работу вступает один из резервных (запасных) элементов. Этот процесс продолжается до тех пор, пока все резервные образцы не будут исчерпаны.
Рис. 2.17 - Блок-схема системы включения резервного оборудования замещением
Примем для этой системы следующие допущения:
1. Отказ системы происходит, если откажут все n элементов.
2. Вероятность отказа каждого образца оборудования не зависит от состояния остальных (n-1) образцов (отказы статистически независимы).
3. Отказывать может только оборудование, находящееся в работе, и условная вероятность отказа в интервале (t, t+dt) равна λdt; запасное оборудование не может выходить из строя до того, как оно будет включено в работу.
4. Переключающие устройства считаются абсолютно надёжными.
5. Все элементы идентичны. Резервные элементы имеют характеристики как новые.
Система способна выполнять требуемые от нее функции, если исправен по крайней мере один из n образцов оборудования. В этом случае при экспоненциальном законе и «холодном» резерве надёжность равна просто сумме вероятностей состояний системы, исключая состояние отказа, т.е.
т – кратность резервирования.
,Где λ и Т0 – ИО и средняя наработка до первого отказа основного устройства.
При «горячем» резерве –
,2.3 Методы обеспечения надёжности сложных систем
2.3.1 Конструктивные способы обеспечения надёжности
Одной из важнейших характеристик сложных технических систем является их надёжность. Требования к количественным показателям надёжности возрастают тогда, когда отказы технической системы приводят к большим затратам материальных средств, либо угрожают безопасности (например, при создании атомных лодок, самолётов или изделий военной техники). Один из разделов технического задания на разработку системы - раздел, определяющий требования к надёжности. В этом разделе указывают количественные показатели надёжности, которые необходимо подтверждать на каждом этапе создания системы.
На этапе разработки технической документации, являющейся комплектом чертежей, технических условий, методик и программ испытаний, выполнение научно-исследовательских расчётов, подготовки эксплуатационной документации и обеспечение надёжности осуществляют способами рационального проектирования и расчётно-экспериментальными методами оценки надёжности.
Существуют несколько методов, с помощью которых можно повысить конструктивную надёжность сложной технической системы. Конструктивные методы повышения надёжности предусматривают создание запасов прочности металлоконструкций, облегчение режимов работы электроавтоматики, упрощение конструкции, использование стандартных деталей и узлов, обеспечение ремонтопригодности, обоснованное использование методов резервирования.
Анализ и прогнозирование надёжности на стадии проектирования даёт необходимые данные для оценки конструкции. Такой анализ проводят для каждого варианта конструкции, а также после внесения конструктивных изменений. При обнаружении конструктивных недостатков, снижающих уровень надёжности системы, проводят конструктивные изменения и корректируют техническую документацию.
2.3.2 Технологические способы обеспечения надёжности изделий в процессе изготовления
Одним из основных мероприятий на стадии серийного производства, направленных на обеспечение надёжности технических систем, является стабильность технологических процессов. Научно обоснованные методы управления качеством продукции позволяют своевременно давать заключение о качестве выпускаемых изделий. На предприятиях промышленности применяют два метода статистического контроля качества: текущий контроль технологического процесса и выборочный метод контроля.
Метод статистического контроля (регулирования) качества позволяет своевременно предупреждать брак в производстве и, таким образом, непосредственно вмешиваться в технологический процесс.