Смекни!
smekni.com

Классификация и характеристика пожаров (стр. 4 из 4)

Способы и средства тушения пожаров.

В практике тушения пожаров наибольшее распространение получили следующие принципы прекращения горения:

- изоляция очага горения от воздуха или снижение путем разбавления воздуха негорючими газами концентрации кислорода до значения, при котором не может происходить горение;

- охлаждение очага горения ниже определенных температур;

- интенсивное торможение (ингибирование) скорости химической реакции в пламени;

- механический срыв пламени в результате воздействия на него сильной струи газа и воды;

- создание условий огнепреграждения, т.е. таких условий, при которых пламя распространяется через узкие каналы.

Для тушения пожаров используют: воду, пену, газы, ингибиторы.

Огнетушащая способность воды обуславливается охлаждающим действием, разбавлением горючей среды образующимися при испарении парами и механическим воздействием на горящее вещество, т.е. срывом пламени. Охлаждающее действие воды определяется значительными величинами ее теплоемкости и теплоты парообразования. Разбавляющее действие, приводящее к снижению содержания кислорода в окружающем воздухе, обуславливается тем, что объем, пара в 1700 раз превышает объем испарившейся воды.

Наряду с этим вода обладает свойствами, ограничивающими область ее применения. Так, при тушении водой нефтепродукты и многие другие горючие жидкости всплывают и продолжают гореть на поверхности, поэтому вода может оказаться малоэффективной при их тушении. Огнетушащий эффект при тушении водой в таких случаях может быть повышен путем подачи ее в распыленном состоянии.

Вода, содержащая различные соли и поданная компактной струей, обладает значительной электропроводностью, и поэтому ее нельзя применять для тушения пожаров объектов, оборудование которых находится под напряжением.

Пены применяют для тушения твердых и жидких веществ, не вступающих во взаимодействие с водой. Огнетушащие свойства пены определяют ее кратностью - отношением объема пены к объему ее жидкой фазы, стойкостью, дисперсностью и вязкостью. На эти свойства пены помимо ее физико-химических свойств оказывают влияние природа горючего вещества, условия протекания пожара и подачи пены.

В зависимости от способа и условий получения огнетушащие пены делят на химические и воздушно-механические. Химическая пена образуется при взаимодействии растворов кислот и щелочей в присутствии пенообразующего вещества и представляет собой концентрированную эмульсию двуокиси углерода в водном растворе минеральных солей, содержащем пенообразующее вещество.

Применение химической пены в связи с высокой стоимостью и сложностью организации пожаротушения сокращается.

При тушении пожаров инертными газообразными разбавители используют двуокись углерода, азот, дымовые или отработавшие газы, пар, а также аргон и другие газы. Огнетушащие действие названных составов заключается в разбавлении воздуха и снижении в нем содержания кислорода до концентрации, при которой прекращается горение. Огнетушащий эффект при разбавлении указанными газами обуславливается потерями теплоты на нагревание разбавителей и снижением теплового эффекта реакции. Особое место среди огнетушащих составов занимает двуокись углерода (углекислый газ), которую применяют для тушения складов легковоспламеняющей жидкости, аккумуляторных станций, сушильных печей, стендов для испытания электродвигателей и т.д.

Следует помнить, однако, что двуокись углерода нельзя применять для тушения веществ, в состав молекул которых входит кислород, щелочных и щелочноземельных металлов, а также тлеющих материалов. Для тушения этих веществ используют азот или аргон, причем последний применяют в тех случаях, когда имеется опасность образования нитридов металлов, обладающих взрывчатыми свойствами и чувствительностью к удару.

Все описанные выше огнетушащие составы оказывают пассивное действие на пламя. Более перспективны огнетушащие средства, которые эффективно тормозят химические реакции в пламени, т.е. оказывают на них ингибирующее воздействие. Наибольшее применение в пожаротушении нашли огнетушащие составы - ингибиторы на основе предельных углеводородов, в которых один или несколько атомов водорода замещены атомами галоидов (фтора, хлора, брома).

Галоидоуглеводороды плохо растворятся в воде, но хорошо смешиваются со многими органическими веществами. Огнетушащие свойства галоидированных углеводородов возрастают с увеличением моряной массы содержащегося в них галоида.

Галоидоуглеводородные составы обладают удобными для пожаротушения физическими свойствами. Так, высокие значения плотности жидкости и паров обуславливают возможность создания огнетушащей струи и проникновения капель в пламя, а также удержание огнетушащих паров около очага горения. Низкие температуры замерзания позволяют использовать эти составы при минусовых температурах.

В последние годы в качестве средств тушения пожаров применяют порошковые составы на основе неорганических солей щелочных металлов. Они отличаются высокой огнетушащей эффективностью и универсальностью, т.е. способностью тушить любые материалы, в том числе нетушимые всеми другими средствами.

Аппараты пожаротушения подразделяют на передвижные (пожарные автомашины), стационарные установки и огнетушители (ручные до 10 л. и передвижные и стационарные объемом выше 25 л.).

Классификация зданий и сооружений по степени огнестойкости.

Интенсивность пожаров во многом зависит от огнестойкости объектов и составных частей. Строительный и другие материалы по своему поведению в условиях высоких температур подразделяются на: несгораемые, трудносгораемые, сгораемые.

Огнестойкость зданий - способность зданий оказывать сопротивление воздействию высоких температур во времени при сохранении своих эксплуатационных средств. Огнестойкость здания зависит от пределов огнестойкости его основных конструкционных частей.

Предел огнестойкости конструкций - время, в течение которого конструкция выполняет свой функции в условиях пожара.

Предел огнестойкости конструкций зависит от поперечного сечения, толщины защитного слоя, возгораемости строительного материала, от способности сохранять механические свойства при воздействии высоких температур.

Огнестойкость зданий и сооружений определяется огнестойкостью образующих их строительных конструкций. Огнестойкость строительных конструкций определяется такими показателями как огнестойкость, предел огнестойкости и предел распространения огня.

Огнестойкость конструкции - способность сохранять несущие или ограждающие функции в условиях пожара.

Различают следующие предельные виды огнестойкости:

- потеря несущей способности вследствие обрушения конструкции или возникновения предельных деформаций. Обозначается буквой R;

- потеря целостности в результате образования в конструкции сквозных трещин или отверстий, через которые на не обогреваемую поверхность проникают продукты горения или пламя. Обозначается буквой E;

- потеря теплоизолирующей способности в результате повышения температуры на не обогреваемой поверхности конструкции. Обозначается буквой I.

Установлены следующие предельные состояния несущих и ограждающих конструкций по огнестойкости:

- для колонн, балок, ферм, арок и рам - только потеря несущей способности R;

- для наружных несущих стен и перекрытий - потеря несущей способности R и целостности E;

- для наружных ненесущих стен - потеря целостности E;

- для ненесущих внутренних стен и перегородок - потеря целостности E и теплоизолирующей способности I;

- для ненесущих внутренних стен и противопожарных преград - потеря несущей способности R, целостности E и теплоизолирующей способности I;

Классификация помещений и зданий по степени взрывопожароопасности.

Все помещения и здания подразделяются на 5 категорий:

1. Взрывопожароопасные. Та категория, в которой осуществляются технологические процессы, связанные с выделением горючих газов, легковоспламеняющихся жидкостей с температурой вспышки паров до 28 °С,

2. Помещения, где осуществляются технологические процессы с использованием легковоспламеняющихся жидкостей с температурой вспышки свыше 28°С, способные образовывать взрывоопасные и пожароопасные смеси при воспламенении которых образуется избыточное расчетное давление взрыва свыше 5 кПа.

3. Помещения и здания, где обращаются технологические процессы с использованием горючих и трудногорючих жидкостей, твердых горючих веществ, которые при взаимодействии друг с другом или кислородом воздуха способны только гореть. При условии, что эти вещества не относятся ни к 1, ни к 2.

Эта категория — пожароопасная.

4. Помещения и здания, где обращаются технологические процессы с использованием негорючих веществ и материалов в горячем, раскаленном или расплавленном состоянии (например, стекловаренные печи).

5. Помещения и здания, где обращаются технологические процессы с использованием твердых негорючих веществ и материалов в холодном состоянии (механическая обработка металлов).

Список используемой литературы

1. Арустамов Э.А. Безопасность жизнедеятельности: Учеб./ Э.А. Арустомов. – М.: «Дашков и Ко», 2001. – 678 с.

2. Белов С.Б. Безопасность жизнедеятельности: Учеб. для вузов/С.Б.Белов, А.И. Ильницкая, А.Ф. Козьяков. – М.: Высш.школа, 2004. 606 с.

3. Масленникова И.С. Безопасность жизнедеятельности: Учеб.пособие/ И.С. Масленникова, Е.А.Власова, А.Ю.Постнов. – СПб.: СПбГИЭУ, 2003. – 115 с.

4. Шлендер П.Э. Безопасность жизнедеятельности: Учеб.пособие/П.Э. Шлендер, В.М. Маслова, С.И.Подгаецкий. – М.: Вузовский учебник, 2004. – 208 с.