Смекни!
smekni.com

Методы расчета и способы обеспечения вентиляции (стр. 3 из 6)

5 слов о больших системах вентиляции

Аналогично предложенной схеме функционирует схема СКВ на базе приточно-вытяжной вентиляции и системы чиллер-фэнкойл. Чиллер или холодильная машина служит для подготовки охлажденной воды, а уже охлажденная вода по трубопрорводам раздается по всему зданию для охлаждения воздуха в приточных камерах (центральных кондиционерах) или непосредственно в помещениях.
Последняя СКВ относиться уже к центральному кондиционированию, но так же обеспечивает и подержание климатических параметров в каждом помещении, но при этом на все здание или комплекс помещений устанавливается один чиллер для подготовки холодной или теплой воды, которая потом используется вентиляторными доводчиками или фэнкойлами, установленными в каждом помещении и отвечающими за температурный режим. Наружный воздух может подаваться как централизованно, так и независимо в каждое отдельное помещения, если применены фэнкойлы канального типа, которые допускают обработку наружного воздуха. Эта схема наиболее распространена на Западе, особенно в крупных зданиях. (Уровень западной экономики и ее акценты требовал и позволял строить подобные инженерные системы, не только в промышленных, но и в жилых и общественных зданиях).
Преимущества подобной системы в ее долговечности (20-30 лет - расчетные сроки эксплуатации) и возможности самых различных комбинаций по топологии и мощностей, удаленность фэнкойла (обслуживаемого помещения) может быть практически любая, в отличие от фреоновых систем, где длинна трассы редко превышает 150 метров и на очень крупных объектах это решительное ограничение. Важным преимуществам является и то можно рассчитывать системы, которые могут снять пиковые нагрузки, без увеличения производительности самого чиллера, для этого достаточно подобрать соответствующий бак аккумулятор в котором накапливается расчетный запас холодной воды, классический пример - ночной режим работы, когда чиллер работает на аккумуляторный бак ночью, когда доступна вся электрическая мощность, а тарифы на электрическую энергию снижены. При том, что коэффициент потребленной электрической энергии - COP у фреоновых систем выше, итоговые эксплуатационные расходы у СКВ на базе чиллера могут оказаться ниже, а также первоначальные капитальные затраты на всю систему.
Важно и то, что при использования СКВ на базе чиллер-фэнкойл можно не строить систему отопления, т.к. обогрев помещений произведут все те же комнатные фэнкойлы, причем в особо точном температурном режиме, для этого достатоно предусмотреть источник тепла, в водяном контуре системы кондиционирования, это может быть автономный котел или теплообменник от центральной теплоснабжающей магистрали.



Чиллер с воздушным охлаждением



Комнатный фэнкойл



Канальный фэнкойл - с притоком наружного воздуха

Мы же вернемся к более общему принципу организации СКВ, когда воздух в помещения подается от одного воздухообрабатывающего агрегата или центрального кондиционера (кондиционера с приточным воздухом), как наиболее общего случая с максимальным набором возможностей. Итак, если нет в помещениях выделения вредностей (в административных и жилых зданиях) в целях экономии применяют рециркуляцию. Ниже приведена принципиальная схема подобной системы.



Рис.4.

При такой организации приточная установка забирает определенный объем воздуха Vн. Из внешней среды, часть воздуха забирает из обслуживаемого помещения - Vр, смешивает эти потоки и обрабатывает и подает во внутренние помещения - Vп=Vн+Vр. Далее подаваемый приточный воздух необходимо распределить по обслуживаемым помещением добиваясь нормированной скорости в рабочей зоне и с учетом максимального эффекта перемешивания или вытеснения внутреннего воздуха. Этот классическая организация система кондиционирования воздуха. Подобная система позволяет поддерживать любые климатические параметры, о которых говорилось выше, или только часть из них по необходимости, в случае выделения вредностей, рециркуляция может быть уменьшена или полностью отсутствовать, в таком случае весь поступающий воздух в помещение будет наружным, также можно будет исключить рециркуляцию и в летний период, когда нет необходимости тратить энергию на догрев поступающего воздуха.
И наконец вернемся к функциональным возможностям или обязанностям, как будет угодно, СКВ. Кроме подачи и фильтрации наружного воздуха для поддержания всех климатических параметров СКВ должна уметь нагревать, охлаждать, увлажнять или осушать воздух, а так же его распределить необходимым образом. Как это осуществляется технически рассмотрим на примере центрального кондиционера или центральной приточной установки.
Нагрев - осуществляется электрическим калорифером или водяным (паровым ) нагревателями. Для нашей климатической зоны мощность калорифера, исходя из заданного расхода наружного воздуха, определяется приблизительно из расчета 15 кВт. на каждую тысячу м3 - немалое значение. Поддержание температуры осуществляется в первом случае ступенчатым регулированием мощности электрического нагрева или изменением расхода горячей воды или пара.
Охлаждение - процесс охлаждения воздуха происходит в секции охлаждения, которая может представлять водяной радиатор, в котором протекает холодная вода или другой хладагент (допустим незамерзающая смесь воды и гликоля), контролируя расход хладагента, можно контролировать степень охлаждения воздуха. Также секция охлаждения может представлять собой радиатор, в котором происходит кипение фреона, т.е. по сути это испаритель кондиционера (см .Принцип действия кондиционера) поступающего из компрессорно-конденсаторного блока. Степень охлаждения воздуха регулируется дискретным включением компрессора воздушно-конденсаторного блока, таким образом точно поддерживать температуру приточного воздуха невозможно, что накладывает иногда ограничения на использование такого метода. Охлаждение воздуха возможно также в процессе адиабатического увлажнения воздуха в камере орошения. Камера орошения представляет собой камеру в которой установлены форсунки распыляющие воду, испарясь вода забирает тепло у воздуха, при этом его увлажняет. контролировать температуру воздуха при таком методе сложно (только температурой воды) при этом не контролируется влажность, поэтому этот метод редко используется в качестве основного. Позже мы подробнее рассмотрим подготовку хладагента для секции охлаждения.
Осушение - осушение воздуха или удаление из него паров воды возможно двумя методами.
Первый основан на адсорбционном методе. Этот метод основан на сорбционных (влагопоглощающих) свойствах некоторых веществ - сорбентов. Имея пористо-капиллярную структуру, сорбенты извлекают водяной пар из воздуха. По мере насыщения сорбента влагой эффективность осушения снижается. Поэтому сорбент нужно периодически регенерировать, т.е. выпаривать из него влагу путем продувания потоком горячего воздуха. Секция осушения построенная по такому методу, как правило, представляет собой ротор половина которого проходит через приточный воздух, а вторая половина через камеру восстановления, в которой сорбент отдает влагу. Второй метод конденсаторный, основан на он охлаждения воздуха ниже точки росы, когда происходит конденсация водяных паров в жидкую фракцию.Охлажденный воздух при этом нагревают потом до необходимой температуры. Так как процесс нагревания и охлаждения так или иначе уже востребованы в СКВ, то второй метод более распространенный.
Увлажнение - возможно двумя способами. Непосредственным добавлением водяного пара в приточный воздух - пароувлажнение. Поддержание влажности осуществляется путем контроля расхода водяного пара. Недостатком данного метода является высокая энергозатратность, связанная с подготовкой пара путем нагрева воды до испарения.
Второй способ основан на адиабатическом увлажнение в оросительной камере, принцип которой мы уже рассмотрели выше. При определенной температуре воздух может впитать строго определенное количество влаги, контроль увлажнения осуществляется путем регулирования температуры воздуха поступающего в камеру орошения., после прохождения камеры воздух может быть нагрет при необходимости. Данный метод получил наибольшее распространение из-за технологической простоты и энергоэффективности.



Рис.5.