Смекни!
smekni.com

Основы электробезопасности при выполнении лабораторных работ (стр. 3 из 5)

Напряжение прикосновения увеличивается по мере уда­ления от заземляющего устройства.

3.4. Каковы предельно допустимые уровни тока и напря­жения прикосновения?

Предельно допустимые уровни напряжения и тока уста­новлены в соответствии с ГОСТ 12.1.038-82 (см. таблицу)

Предельно допустимые уровни U и I

Род тока U, В I, mА
Переменный 50 Гц <=2 <=0.3
Переменный 400 Гц <= 3 <=0.4
Постоянный <=8 <=0.1

З.5 Что такое шаговое напряжение?

Это напряжение между двумя точками на земле на расстоянии шага, возникающее вокруг точки замыкания на землю токонесущей линии. Наибольшая величина этого напря­жения наблюдается на расстоянии 80 - 100 см от точки касания провода с землей, затем оно быстро понижается и на расстоя­нии 20 м практически становится равным нулю.

3.6. Какова опасность двухфазного прикосновения?

Под двухфазным понимают одновременное прикосно­вение к двум фазам электролинии находящейся под напряже­нием (рис. 3.1). Такое прикосновение является наиболее опас­ным, так как ток, проходящий через тело по самому опасному


Рис. 3.1. Схема двухфазного прикосновения к сети переменного тока (фазы А, В, С)

пути (рука-рука), будет зависеть от приложенного линейного напряжения (Uл = 380 В) и от сопротивления тела человека (Rч ~ 1000 Ом):

I = U/R = 380 B/ 1000 Om = 380 mA

Такой ток смертельно опасен как в сети с изолированной, так и с заземленной нейтралью.

3.7. Чем характеризуется однофазное прикосновение?

Это прикосновение к одной фазе, при котором напряже­ние не превышает фазного (220 В), соответственно меньшим оказывается проходящий через тело человека ток. При этом на ток оказывает влияние режим нейтрали, сопротивление изоля­ции проводов сети, сопротивление поля, на котором стоит чело­век, сопротивление обуви и т.д.

Вместе с тем, однофазное прикосновение происходит во много раз чаще двухфазного.

3.8. В чем опасность однофазного сопротивления в сети с заземленной нейтралью?

В этом случае цепь тока, проходящего через тело (рис. 3.2), включает в себя сопротивление тела человека (Rч), его обуви (Rоб), пола (Rо)? а также сопротивление заземления нейт­рали источника тока (Rо):

Iч = Uф/Rч + Rоб + Rп + Rо

В наиболее неблагоприятном случае когда Rп = 0 Rоб = О с учетом, что Rо<< Rч:

Iч = Uф/Rч = 220/1000 = 220 mA

Такой ток смертельно опасен. При использовании не­проводящей обуви (резиновые галоши) и изолирующего покры­тая пола (деревянное покрытие) сила тока существенно меньше:

Iч = 220/1000 + 45000 + 100000 = 1,5 mA

3.9. Каковы особенности однофазного прикосновения в сети с изолированной нейтралью?

В такой сети (рис. 3.3) ток, проходящий через тело чело­века в земл1о возвращается к источнику тока через изоляцию проводов сети, которые (» исправном состоянии) обладают весь­ма большим сопротивлением (Rиз). В этом случае

Iч = Uф/Rч + Rоб + Rп + Rиз*1/3

В наиболее неблагоприятном случае, когда Rоб = 0 Rп = 0

Iч = Uф/ Rч + Rиз*1/3 = 220/1000+30000 = 7 mA

Такой ток не представляет смертельной опасности.

Рис. 3.3. Схема прикосновения к одной фазе трехфазной сети с изолированной нейтралью

4. ТЕХНИЧЕСКИЕ СПОСОБЫ ЗАЩИТЫ ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

4.1. Какие технические средства защиты применяются для обеспечения электробезопасности?

Отдельно или в сочетании друг с другом применяются следующие технические способы:

- защитное заземление;

- защитное зануление;

- защитное отключение;

- изоляция токоведущих частей (рабочая, дополнитель­ная, усиленная, двойная);

- оградительные устройства.

Все эти способы и средства защиты должны применяться с учетом:

- номинального напряжения, рода и частоты тока;

- способа электроснабжения ( от стационарной сети или автономного источника питания);

- режима нейтрали (изолированная или заземленная);

- характеристики помещения по степени опасности;

- характера возможного прикосновения к элементам электроцепи.

4.2. Как выполняется защитное заземление?

Под заземлением понимается преднамеренное электри­ческое соединение с землей (или ее эквивалентом) нетоковедущих частей прибора или установки, которые могут оказаться под напряжением. Заземление защищает от поражения током при прикосновении к корпусу установки (или Другим нетоковедущим частям, которые оказались под напряжением).

Защитное заземление следует отличать от рабочего -преднамеренного соединения с землей отдельных точек элект­росети (нейтральной точки, фазового провода и т.д.), необходи­мого для работы определенной электрической схемы.

Суть защитного заземления заключается в том, что нетоковедушие части установки соединяются с заземляющим уст­ройством через малое сопротивление, во много раз меньше, чем сопротивление тела человека. В случае замыкания на корпус основная часть тока проходит через землю, в то время как ток через тело оказывается весьма малым (рис. 4.1).

Рис. 4.1. Схема заземления электроприемника

4.3. Что представляет собой заземляющее устройство?

Заземляющим устройством называется совокупность за­земляющих проводников и заземлителя. Заземлитель - это про­водник большой площади (например пластина), находящийся в соприкосновении с землей и соединенный с заземляющими проводниками, контактирующими с заземляемой частью элект­роустановки.

Диаметр круглых пластинчатых заземлителей неоцинко­ванных и оцинкованных соответственно 10 и 6 мм. Сечение прямоугольных заземлителей 48 мм при толщине пластины >= 4 мм.

4.4. Какие части электроустановок подлежат обязатель­ному заземлению?

Заземлению подлежат:

- корпуса электрических машин, трансформаторов, при­боров, светильников;

- приводы электрических аппаратов;

- вторичные обмотки трансформаторов;

- каркасы распределительных щитов управления;

- кабельные соединительные муфты;

- металлические оболочки и броня силовых кабелей напряжением до 42 В переменного тока и до 110 В постоянного.

Для заземления электроустановок различных назначений территориально приближенных одна к другой рекомендуется применять одно заземляющее устройство.

4.5. В чем заключается основной недостаток защитного заземления?

Недостаток защитного заземления в том, что при замы­кании на заземленный корпус в сети с изолированной нейт­ралью напряжение на нем сохраняется, как правило, длительное время.

4.6. В чем состоит сущность зануления электроустано­вок?

Зануление - это основная мера защиты от поражения током людей в случае прикосновения к корпусам электрообо­рудования и другим деталям, оказавшимся под напряжением из-за повреждения изоляции или однофазного короткого замы­кания в сети с заземленной нейтралью.

Зануление заключается в преднамеренном соединении с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением (рис. 4.2).

Нулевым защитным проводником называется проводник, соединиющий зануляемые части с заземленной нейтралью источника тока. Такое соединение превращает всякое замыкание токоведущих частей на землю или на корпус в однофазное короткое замыкание, что приводит к срабатыванию механизма защитного отклонения.

Рис. 4.2. Схемазануления электроприемника:

Rо, Rн и Rф - сопротивление соответственно нейтрали, нулевого провода и фазного провода.

4.7. Каково основное различие между нулевым защитным проводником и нулевым рабочим проводником?

Нулевым рабочим проводником называется проводник, используемый для питания электроприемников, соединенный с заземленной нейтралью генератора (трансформатора) в сетях трехфазного тока с заземленным выводом источника однофаз­ного тока.

Нулевые рабочие проводники длжны быть рассчитаны на длительное протекание рабочего тока.

4.8. В чем заключается принцип работы устройств авто­матического отключения?

Эти устройства предназначены для быстрого отключения питающей электроцепи от электроустановки. По принципу дей­ствия они делятся на два типа: разового отключения и времен­ного отключения.

К устройствам разового отключения относятся элементы, разрывающие питающую сеть без ее автоматического включе­ния. Это плавкие предохранители и электромагнитные устройства, обеспечивающие контакт выключателя только при заданных режимах тока и напряжения. При срабатывании защиты контакт разрывается и самостоятельно не восстанавливается.

Вторая группа устройств (временного отключения) работает по принципу срабатывания отключения при аварийных си­туациях с последующем автоматическим замыканием контактов цепи при нормализации параметров тока и напряжения.