Основные параметры, характеризующие ионизирующие излучения,— доза и мощность дозы излучения, поток и плотность потока частиц.
Ионизирующая способность гамма-лучей характеризуется экспозиционной дозой излучения. Единицей экспозиционной дозы гамма-излучения является кулон на килограмм (Кл/кг). Согласно стандарту, кулон на килограмм — экспозиционная доза рентгеновского и гамма-излучений, при которой сопряженная корпускулярная эмиссия на 1 кг сухого атмосферного воздуха производит в воздухе ионы, несущие заряд в один кулон электричества каждого знака. В практике в качестве единицы экспозиционной дозы применяют несистемную единицу рентген (Р). Рентген — это такая доза (количество энергии) гамма-излучения, при поглощении которой в 1 см3 сухого воздуха (при температуре 0 °С и давлении 760 мм рт. ст.) образуется 2,083 миллиарда пар ионов,
Единица мощности экспозиционной дозы — ампер на килограмм (А/кг), рентген в секунду (Р/с) и рентген в час (Р/ч). Ампер на килограмм равен мощности экспозиционной дозы, при которой за время, равное одной секунде, сухому атмоссрерному воздуху передается экспозиционная доза кулон на килограмм:
1 Р/с=2,58-10-4 А/кг; 1 А/кг=3876 Р/с или 1 А/кг»3900 Р/с= =14-10е Р/ч; 1 Р/ч=7,167-Ю"8 А/кг. Процесс ионизации атомов нейтронами отличен от процесса ионизации гамма-лучами. Поток нейтронов измеряется числом нейтронов, приходящихся на квадратный метр поверхности,— нейтрон /м2. Плотность потока -— нейтрон/(м2хс).
Степень тяжести лучевого поражения главным образом зависит от поглощенной дозы. Для измерения поглощенной дозы любого вида ионизирующего излучения Международной системой измерений «СИ» установлена единица грэй (Гр); в практике применяется внесистемная единица — рад. Грэй равен поглощенной дозе излучения, соответствующей энергии 1 Дж ионизирующего излучения любого вида, переданной облучаемому веществу массой 1 кг. Для:
типичного ядерного взрыва один рад соответствует потоку нейтронов (с энергией, превышающей 200 эВ) порядка 5-Ю14 нейтрон /м2 [5]: 1 Гр=1 Дж/кг=100 рад=10000 эрг/г.
Распространяясь в среде, гамма-излучение и нейтроны ионизируют ее атомы и изменяют физическую структуру веществ. При ионизации атомы и молекулы клеток живой ткани за счет нарушения химических связей и распада жизненно важных веществ погибают или теряют способность к дальнейшей жизнедеятельности.
При воздействии проникающей радиации у людей и животных может возникнуть лучевая болезнь. Степень поражения зависит от экспозиционной дозы излучения, времени, в течение которого эта доза получена, площади облучения тела, общего состояния организма. Экспозиционная доза излучения до 50—80 Р (0,013—0,02 Кл/кг), полученная за первые четверо суток, не вызывает поражения и потери трудоспособности у людей, за исключением некоторых изменений крови. Экспозиционная доза в 200—300 Р, полученная за короткий промежуток времени (до четырех суток), может вызвать у людей средние радиационные поражения, но такая же доза, полученная в течение нескольких месяцев, не вызывает заболевания. Здоровый организм человека способен за это время частично вырабатывать новые клетки взамен погибших при облучении [6, 7].
При установлении допустимых доз излучения учитывают, что облучение может быть однократным или многократным. Однократным считается облучение, полученное за первые четверо суток. Облучение, полученное за время, превышающее четверо суток, является многократным. При однократном облучении организма человека в зависимости от полученной экспозиционной дозы различают четыре степени лучевой болезни.
Лучевая болезнь первой (легкой) степени возникает при общей экспозиционной дозе излучения 100—200 Р (0,026—0,05 Кл/кг). Скрытый период может продолжаться две-три недели, после чего появляются недомогание, общая слабость, чувство тяжести в голове, стеснение в груди, повышение потливости, может наблюдаться периодическое повышение температуры. В крови уменьшается содержание лейкоцитов. Лучевая болезнь первой степени излечима.
Лучевая болезнь второй (средней) степени возникает при общей экспозиционной дозе излучения 200—400 Р (0,05—0,1 Кл/кг). Скрытый период длится около недели. Лучевая болезнь проявляется в более тяжелом недомогании, расстройстве функций нервной системы, головных болях, головокружениях, вначале часто бывает рвота, понос, возможно повышение температуры тела; количество лейкоцитов в крови, особенно лимфоцитов, уменьшается более чем наполовину. При активном лечении выздоровление наступает через 1,5—2 мес. Возможны смертельные исходы—до 20 %.
Лучевая болезнь третьей (тяжелой) степени возникает при общей экспозиционной дозе 400—600 Р (0,1—0,15 Кл/кг). Скрытый период — до нескольких часов. Отмечают тяжелое общее состояние, сильные головные боли, рвоту, понос с кровянистым стулом, иногда потерю сознания или резкое возбуждение, кровоизлияния в слизистые оболочки и кожу, некроз слизистых оболочек в области десен. Количество лейкоцитов, а затем эритроцитов и тромбоцитов резко уменьшается. Ввиду ослабления защитных сил организма появляются различные инфекционные осложнения. Без лечения болезнь в 20—70 % случаев заканчивается смертью, чаще от инфекционных осложнений или от кровотечений.
При облучении экспозиционной дозой более 600 Р (0,15 Кл/кг) развивается крайне тяжелая четвертая степень лучевой болезни, которая без лечения обычно заканчивается смертью в течение двух недель.
При взрывах ядерных боеприпасов средней и большой мощности зоны поражения проникающей радиации несколько меньше зон поражения ударной волной и световым излучением. Для боеприпасов малой мощности, наоборот, зоны поражения проникающей радиации превосходят зоны поражения ударной волной и световым излучением. Ориентировочные радиусы зон поражения для различных экспозиционных доз гамма-излучений и мощностей взрывов ядерных боеприпасов в приземном слое приведены в табл. 5.
Радиационные повреждения. При воздушных (приземных) и наземных ядерных взрывах плотности потоков (дозы) проникающей радиации на тех расстояниях, где ударная волна выводит из строя здания, сооружения, оборудование и другие элементы производства, в большинстве случаев для объектов являются безопасными. Но с увеличением высоты взрыва все большее значение в поражении объектов приобретает проникающая радиация. При взрывах на больших высотах и в космосе основным поражающим фактором становится импульс проникающей радиации.
Проникающая радиация может вызывать обратимые и необратимые изменения в материалах, элементах радиотехнической, электротехнической, оптической и другой аппаратуры. В космическом пространстве эти повреждения могут наблюдаться на расстояниях десятков и сотен километров от центра взрывов мегатонных боеприпасов.
Необратимые изменения в материалах вызываются нарушениями структуры кристаллической решетки вещества вследствие возникновения дефектов (в неорганических и полупроводниковых материалах), а также в результате прохождения различных физико-химических процессов. Такими процессами являются: радиационный нагрев, происходящий вследствие преобразования поглощенной энергии проникающей радиации в тепловую; окислительные химические реакции, приводящие к окислению контактов и поверхностей электродов; деструкция и «сшивание» молекул в полимерных материалах, приводящие к изменению физико-механических и электрических параметров; газовыделения и образование пылеобразных продуктов, которые могут вызвать вторичные факторы воздействия (взрывы в замкнутых объемах, запыление отдельных деталей приборов и т. д.).
Обратимые изменения, как правило, являются следствием ионизации материалов и окружающей среды. Они проявляются в увеличении концентрации носителей тока, что приводит к возрастанию утечки тока, снижению сопротивления в изоляционных, полупроводниковых, проводящих материалах и газовых промежутках. Обратимые изменения в материалах, элементах и аппаратуре в целом могут возникать при мощностях экспозиционных доз 1000 Р/с. Проводимость воздушных промежутков и диэлектрических материалов начинает существенно увеличиваться при мощностях доз 10 000 Р/с и более.
Проникающая радиация, проходя через различные среды (материалы), ослабляется. Степень ослабления зависит от свойств материалов и толщины защитного слоя. Нейтроны ослабляются в основном за счет столкновения с ядрами атомов. Вероятность процессов взаимодействия нейтронов с ядрами количественно характеризуется эффективным сечением взаимодействия и зависит главным образом от энергии нейтронов и природы ядер мишени.
Энергия гамма-квантов при прохождении их через вещества расходуется в основном на взаимодействие с электронами атомов. Поэтому степень их ослабления практически обратно пропорциональна плотности материала.
Защитные свойства материала характеризуются слоем половинного ослабления, при прохождении которого интенсивность гамма-лучей или нейтронов уменьшается в два раза (табл. 22).
Если защитная преграда состоит из нескольких слоев различных материалов, например грунта, бетона и дерева, то подсчитывают степень ослабления для каждого слоя в отдельности и результаты перемножают:
Защитные сооружения ГО надежно обеспечивают защиту людей от проникающей радиации. Расчет защитных свойств этих сооружений производится по гамма-излучению, так как доза гамма-излучения значительно выше дозы нейтронного излучения, а слои половинного ослабления для строительных материалов приблизительно одинаковы.
На объектах, оснащенных электронной, электротехнической и оптической аппаратурой, следует предусматривать меры по защите этой аппаратуры от воздействия проникающей радиации. Повышение радиационной стойкости аппаратуры может быть достигнуто путем [5]: