В настоящее время большой вклад в дозу получаемую человеком вносят медицинские процедуры и методы лечения, связанные с применением радиоактивности. Большой ущерб окружающей среде могут нанести также атомные подводные лодки с не выгруженным топливом в реакторах. Так в 1985 году от теплового взрыва реактора в бухте Чажма на Дальнем Востоке погибли люди, произошёл мощный радиоактивный выброс, и это облако двинулось в сторону Владивостока.
Также проблемы могут возникать при не правильной транспортировке радиоактивных отходов на комбинат по переработке этих отходов, хранении жидких и твёрдых радиоактивных отходов.
Таким образом, из всего выше сказанного можно сделать вывод, что в изменении радиационного фона окружающей среды большой вклад вносят АЭС, ядерные взрывы и радиоактивные отходы.
1.2. Влияние облучения растений на качество продукции растениеводства
Продовольственное и техническое качество продукции – зерна, клубней, масличных семян, корнеплодов, получаемой от облучённых растений, сколько- либо существенно не ухудшается даже при снижении урожая до 30-40 %.
Содержание белка и клейковины в зерне пшеницы, рассчитанное на единицу массы, не снижается, однако общий выход заметно уменьшается в результате больших потерь урожая зерна.
Содержание масла в семенах подсолнечника и лотса зависит от дозы облучения, получаемой растениями, и фазы их развития в момент начала облучения. Аналогичная зависимость наблюдается и по выходу сахара в урожае корнеплодов облучённых растений свеклы. Содержание витамина С в плодах томатов, собранных с облучённых растений, зависит от фазы развития растений в период начала облучения и дозы облучения. Например, при облучении растении во время массового цветения и начала плодоношения дозами 3 – 15 кР содержание в плодах томатов витамина С повышалось по сравнению с контролем на 3 – 25 %. Облучение растений в период массового цветения и начало плодоношения дозой до 10 кР затормаживает развитие семян у формирующихся плодов, которые обычно становятся бессемянными.
Аналогичная закономерность получена в опытах с картофелем. При облучении растений в период клубнеобразования урожай клубней при облучении дозами 7 – 10 кР практически не снижается. Если растения облучаются в более раннюю фазу развития, урожай клубней уменьшается в среднем на 30 – 50 %. Кроме того, клубни получаются не жизнеспособными из-за стерильности глазков.
Облучение вегетирующих растений не только приводит к уменьшению их продуктивности, но и снижает посевные качества формирующихся семян. Так при облучении вегетирующих растений не только приводит к уменьшению их продуктивности, но и снижает посевные качества формирующихся семян. Так при облучении зерновых культур в наиболее чувствительные фазы развития (кущение, выход в трубку) сильно снижается урожай, однако всхожесть получаемых семян существенно снижается, что даёт возможность не использовать их для посева. Если же растения облучают в начале молочной спелости (когда происходит формирование звена) даже в относительно высоких дозах, урожай зерна сохраняется практически полностью, однако такие семена не могут быть использованы для посева ввиду предельно низкой всхожести.
Таким образом радиоактивные изотопы не вызывают заметных повреждений растительных организмов, однако в урожае сельскохозяйственных культур они накапливаются в значительных количествах.
1.3. Накопление радионуклидов в почвах и растениях
Значительная часть радионуклидов находится в почве, как на поверхности, так и в нижних слоях, при этом их миграция во многом зависит от типа почвы, её гранулометрического состава, водно-физических и агрохимических свойств.
Основными радионуклидами, определяющими характер загрязнения, в нашей области является цезий – 137 и стронция – 90, которые по разному сортируются почвой. Основной механизм закрепления стронция в почве – ионный обмен, цезия – 137 обменной формой либо по типу ионообменной сорбции на внутренней поверхности частиц почвы.
Поглощение почвой стронция – 90 меньше цезия – 137, а следовательно, он является более подвижным радионуклидом.
В момент выброса цезия – 137 в окружающие среду, радионуклид изначально находится в хорошо растворимом состоянии (парогазовая фаза, мелкодисперсные частицы и т.д.)
В этих случаях поступления в почву цезий – 137 легко доступен для усвоения растениями. В дальнейшем радионуклид может включаться в различные реакции в почве и подвижность его снижается, увеличивается прочность закрепления, радионуклид “стареет”, а такое “старение” представляет комплекс почвенных кристаллохимических реакций с возможным вхождением радионуклида в кристаллическую структуру вторичных глинистых минералов.
Механизм закрепления радиоактивных изотопов в почве, их сорбция имеет большое значение, так как сорбция определяет миграционные качества радиоизотопов, интенсивность поглощения их почвами, а, следовательно, и способность проникать их в корни растений. Сорбция радиоизотопов зависит от многих факторов и одним из основных является механический и минералогический состав почвы тяжёлыми по гранулометрическому составу почвами поглощённые радионуклиды, особенно цезий – 137, закрепляются сильнее, чем лёгкими и с уменьшением размера механических фракций почвы прочность закрепления ими стронция – 90 и цезия – 137 повышается. Наиболее прочно закрепляются радионуклиды илистой фракцией почвы.
Большему удержанию радиоизотопов в почве способствует наличие в ней химических элементов, близких по химическим свойствам к этим изотопам. Так, кальций – химический элемент, близкий по своим свойствам стронцию – 90 и внесение извести, особенно на почвы с высокой кислотностью, ведёт к увеличению поглотительной способности стронция – 90 и к уменьшению его миграции. Калий схож по своим химическим свойствам с цезием – 137. Калий, как неизотопный аналог цезия находится в почве в макроколичествах, в то время как цезий – в ультромикроконцентрациях. Вследствие этого в почвенном растворе происходит сильное разбавление микроколичеств цезия – 137 ионами калия, и при поглощении их корневыми системами растений отмечается конкуренция за место сорбции на поверхности корней. Поэтому при поступлении этих элементов из почвы в растениях наблюдается антагонизм ионов цезия и калия.
Кроме того эффект миграции радионуклидов зависит от метеорологических условий (количество осадков).
Установлено, что стронций – 90 попавший на поверхность почвы, вымывается дождём в самые нижние слои. Следует заметить, что миграция радионуклидов в почвах протекает медленно и их основная часть находится в слое
0 – 5 см.
Накопление (вынос) радионуклидов сельскохозяйственными растениями во многом зависит от свойства почвы и биологической особенности растений. На кислых почвах радионуклиды поступают в растения в значительно больших количествах, чем из почв слабокислых. Снижение кислотности почвы, как правило, способствует уменьшению размеров перехода радионуклидов в растения. Так, в зависимости от свойства почвы содержание стронция – 90 и цезия – 137 в растениях может изменяться в среднем в 10 – 15 раз.
А межвидовые различия сельскохозяйственных культур в накопление этих радионуклидов наблюдается зернобобовыми культурами. Например, стронций – 90 и цезий – 137, в 2 – 6 раз поглощается интенсивное зернобобо-
выми культурами, чем злаковыми.
Поступление стронция – 90 и цезия – 137 в травистой на лугах и пастбищах определяется характером распределения в почвенном профиле.
В загрязнённой зоне, луга Рязанской области загрязнены на площади 73491 га, в том числе с плотностью загрязнения 1,5 Ки/км2 - 67886 (36 % от общей площади), с плотностью загрязнения 5,15 Ки/км2 - 5605 га (3%).
На целинных участка, естественных лугах, цезий находится в слое 0-5 см, за прошедшие годы после аварии не отмечена значительная вертикальная миграция его по профилю почвы. На перепаханных землях цезий – 137 находится в пахотном слое.
Хотя уровень загрязнения лугов в Рязанской области не очень высокий, но требует проведения определённых агротехнических мероприятий, направленных на ослабление влияния радионуклидов на сельскохозяйственную продукцию.
Пойменная растительность в большей степени накапливает цезий – 137, чем суходольная. Так при загрязнении поймы 2,4 Ки/км2 в траве было обнаружено
Ки/кг сухой массы, а на суходольной при загрязнении 3,8 Ки/км2в траве содержалось
Ки /кг.Накопление радионуклидов травянистыми растениями зависит от особенностей строения дернины. На злаковом лугу с мощной плотной дерниной содержание цезия – 137 в фитомассе в 3 – 4 раза выше, чем на разнотравном с рыхлой маломощной дерниной.
Культуры с низким содержанием калия меньше накапливают цезия. Злаковые травы накапливают меньше цезия по сравнению с бобовыми. Растения сравнительно устойчивы к радиоактивному воздействию, но они могут накапливать такое количество радионуклидов, что становятся не пригодными к употреблению в пищу человека и на корм скоту.
Поступление цезия – 137 в растения зависит от типа почвы. По степени уменьшения накопления цезия в урожае растения почвы можно расположить в такой последовательности: дерново-подзолистые супесчаные, дерново-подзо-листые суглинистые, серая лесная, чернозёмы и т.д. Накопление радионуклидов в урожае зависит не только от типа почвы, но и от биологической особенности
растений.
Отмечается, что кальциелюбивые растения обычно поглощают больше стронция – 90,чем растения бедные кальцием. Больше всего накапливают стронций – 90 бобовые культуры, меньше корнеплоды и клубнеплоды, и ещё меньше злаковые.
Накопление радионуклидов в растении зависит от содержания в почве элементов питания. Так установлено, что минеральное удобрение, внесённое в дозах N 90, Р 90, увеличивает концентрацию цезия – 137 в овощных культурах в 3 – 4 раза, а аналогичные внесения калия в 2 – 3 раза снижает его содержание. Положительный эффект на уменьшение поступления стронция – 90 в урожай зернобобовых культур оказывает содержание кальций содержащих веществ. Так например внесение в выщелочный чернозём извести в дозах, эквивалентных гидролитической кислотности, уменьшает поступление стронция – 90 в зерновые культуры в 1,5 – 3,5 раза.