Смекни!
smekni.com

Безопасность жизнедеятельности (стр. 3 из 4)

Рис. 1. Схема защитного заземления в сети с изолированной нейтралью:

1— трансформатор; 2 — сеть; 3 — корпус токоприемника; 4— обмотка электродвигателя; 5—заземлитель; 6—сопротивление заземления (условно)

При пробое изоляции токоведущих частей на корпус, изолированный от земли, он оказывается под фазовым напряжением Uф.

При наличии заземления вследствие стекания тока на землю напряжение прикосновения уменьшается и, следовательно, ток, проходящий через человека, оказывается меньше, чем в незаземленной установке. Чтобы напряжение на заземленном корпусе оборудования было минимальным, ограничивают сопротивление заземления. В установках 380/220 В она должна быть не более 4 Ом, в установках 220/127 В—не более 8 Ом. Если мощность источника питания не превышает 100 кВА, сопротивление заземления может быть в пределах 10 Ом.

В качестве заземляющих устройств электроустановок в первую очередь должны быть использованы естественные заземлители. Возможно применение железобетонных фундаментов промышленных зданий и сооружений. При отсутствии естественных заземлителей допускается применение переносных заземлителей, например ввинчиваемых в землю стальных труб, стержней, уголков. После заглубления в землю они должны иметь концы длиной 100...200 мм над поверхностью земли, к которым привариваются соединительные проводники.

Категорически запрещается использовать в качестве заземлителей трубопроводы с горючими жидкостями и газами.

Рис. 2. Схема зануления в трехфазной четырехпроводной сети с заземленной нейтралью: 1— трансформатор; 2 — сеть; 3 — предохранитель; 4— обмотка электродвигателя; 5— корпус электродвигателя; 6— зануляющий проводник; 7— нулевой защитный проводник; 8 - сопротивление заземления нейтрали

Зануление состоит в преднамеренном соединении металлических нетоковедущих частей оборудования, которые могут оказаться под напряжением вследствие пробоя изоляции, с нулевым защитным проводником (рис. 2). При замыкании любой фазы на корпус образуется контур короткого замыкания, характеризуемый силой тока весьма большой величины, достаточной для «выбивания» предохранителей в фазных питающих проводах. Таким образом электроустановка обесточивается.

Предусматривается повторное заземление нулевого проводника на случай обрыва нулевого провода на участке, близком к нейтрали. По этому заземлению ток стекает на землю, откуда попадает в заземление нейтрали, по нему во все фазные провода, включая имеющий пробитую изоляцию, далее на корпус. Таким образом, образуется контур короткого замыкания.

Опишите процесс горения. Пожарная опасность веществ.

Пожар – это горение вне специального очага, которое не контролируется и может привести к массовому поражению и гибели людей, а также к нанесению экологического, материального и другого вреда.

Горение - это химическая реакция окисления, сопровождающаяся выделением теплоты и света. Для возникновения горения требуется наличие трех факторов: горючего вещества, окислителя (обычно кислород воздуха) и источника загорания (импульса). Окислителем может быть не только кислород, но и хлор, фтор, бром, йод, окислы азота и т.д.

В зависимости от свойств горючей смеси горение бывает гомогенным и гетерогенным. При гомогенном горении исходные вещества имеют одинаковое агрегатное состояние (например, горение газов). Горение твердых и жидких горючих веществ является гетерогенным.

Горение дифференцируется также по скорости распространения пламени и в зависимости от этого параметра может быть дефлаграционным (порядка десятка метров в секунду), взрывным (порядка сотни метров в секунду) и детонационным (порядка тысячи метров в секунду). Пожарам свойственно дефлаграционное горение.

Процесс возникновения горения подразделяется на несколько видов.

Вспышка - быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов.

Возгорание - возникновение горения под воздействием источника зажигания.

Воспламенение - возгорание, сопровождающееся появлением пламени.

Самовозгорание - явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения вещества (материала, смеси) при отсутствии источника зажигания.

Самовоспламенение - самовозгорание, сопровождающееся появлением пламени.

Возникновение горения веществ и материалов при воздействии тепловых импульсов с температурой выше температуры воспламенения характеризуется как возгорание, а возникновение горения при температурах ниже температуры самовоспламенения относится к процессу самовозгорания.

При оценке пожарной безопасности веществ и материалов необходимо учитывать их агрегатное состояние. Поскольку горение, как правило, происходит в газовой среде, то в качестве показателей пожарной опасности необходимо учитывать условия, при которых образуется достаточное для горения количество газообразных горючих продуктов.

Основными показателями пожарной опасности, определяющими критические условия возникновения и развития процесса горения, являются температура самовоспламенения и концентрационные пределы воспламенения.

Температура самовоспламенения характеризует минимальную температуру вещества или материала. при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения. Минимальная концентрация горючих газов и паров в воздухе при которой они способны загораться и распространять пламя, называется нижним концентрационным пределом воспламенения; максимальная концентрация горючих газов и паров, при которой еще возможно распространение пламени, называется верхним концентрационным пределом воспламенения. Область составов и смесей горючих газов и паров с воздухом, лежащих между нижним и верхним пределами воспламенения, называется областью воспламенения.

Концентрационные пределы воспламенения не постоянны и зависят от ряда факторов. Наибольшее влияние на пределы воспламенения оказывают мощность источника воспламенения, примесь инертных газов и паров, температура и давление горючей смеси.

Пожароопасность веществ характеризуется линейной (выраженной в см/с) и массовой (г/c) скоростями горения (распространения пламени) и выгорания (г/м2*с), а также предельным содержанием кислорода, при котором еще возможно горение. Для обычных горючих веществ (углеводородов и их производных) это предельное содержание кислорода составляет 12-14%, для веществ с высоким значением верхнего предела воспламенения (водород, сероуглерод, окись этилена и др.) предельное содержание кислорода составляет 5% и ниже.

Помимо перечисленных параметров для оценки пожарной опасности важно знать степень горючести (сгораемости) веществ. В зависимости от этой характеристики вещества и материалы делят на горючие (сгораемые), трудногорючие (трудносгораемые) и негорючие (несгораемые).

К горючим относятся такие вещества и материалы, которые при воспламенении посторонним источником продолжают гореть и после его удаления. К трудногорючим относят такие вещества, которые не способны распространять пламя и горят лишь в месте воздействия импульса; негорючими являются вещества и материалы, не воспламеняющиеся даже при воздействии достаточно мощных импульсов или мощных источников зажигания.

Горючие вещества могут быть в трех агрегатных состояниях: жидком, твердом и газообразном. Большинство горючих веществ независимо от агрегатного состояния при нагревании образует газообразные продукты, которые при смешении с воздухом, содержащим определенное количество кислорода, образуют горючую среду. Горючая среда может образоваться при тонкодисперсном распылении твердых и жидких веществ. Пожарная опасность вещества тем больше, чем ниже нижний и выше верхний пределы воспламенения и чем ниже температура самовоспламенения.

Задачи

В помещении размерами А, В, Н работает несколько источников шума, суммарный уровень звукового давления представлен в таб.6 Требуется сравнить уровень шума с допустимым и разработать рекомендации по борьбе с шумом, используя акустическую обработку помещения.

Дано:

Размеры помещения: А=20м, В=12м, Н=3,2м

Допустимый уровень звукового давления возьмем для помещений точной сборки, машинописные бюро:

Среднегеометрическое частотыоктавных полос, Гц Уровни звукового давленияна рабочем месте, дБ Допустимые уровни звукового давленияна рабочем месте, дБ Требуемое снижение звукового давления LTP, дБ
31,5 90 96 6
63 93 83 10
125 96 74 22
250 93 68 25
500 94 63 31
1000 93 60 33
2000 88 57 31
4000 86 55 31
8000 70 54 16

Звукопоглощающими называют материалы, у которых величина α превышает 0,2. Примером таких материалов могут служить плиты и маты из минеральной ваты, базальтового и стеклянного волокна, акустические плиты с зернистой или волокнистой структурой типа «Акмигран», «Акминит», «Силакпор» и др. Таким образом, в качестве облицовки применяется минерало-ватная плита 1111-80 толщиной 50 мм с металлическим перфорированным листом. Коэффициент перфорации 46%, α=0,2.

Площадь ограждения помещения SОГР:

SОБЩ=2*А*Н+2*В*Н+2*А*В=2*20*3,2+2*12*3,2+2*20*12=684,8 м2

SОГР=SОБЩ-SПОЛ-SДВЕРЬ-SОКНО=684.8-240-4-8=432,8 м2

SНЕОБЛ=SОБЩ-SОГР=684,8-432,8=252 м2

31,5 63 125 250 500 1000 2000 4000 8000
Li 90 93 96 93 94 93 88 86 70
LД 96 83 74 68 63 60 57 55 54
LТР= Li- LД 6 10 22 25 31 33 31 31 16
αНЕОБЛ. ПОВЕР. 0,01 0,01 0,01 0,01 0,02 0,02 0,03 0,03 0,03
Аi= αНЕОБЛSНЕОБЛ 2,52 2,52 2,52 2,52 5,04 5,04 7,54 7,54 7,54
αОБЛ 0,05 0,05 0,18 0,63 0,9 0,94 1 1 0,95
А1i= αОБЛSОГР 21,64 21,64 77,9 272,66 389,5 406,8 432,8 432,8 411,16
A2i=A1i+Σ αНSН 24,16 24,16 80,42 275,18 394,54 411,84 440,3 440,3 418,7
ΔLi=10lgA2/A1 13,83 13,83 19,05 24,39 25,96 26,15 26,44 26,44 26,14

Из таблицы видно, что расчетная величина снижения уровня шума практически совпадает с требуемыми значениями снижения уровня шума