2. Побудувати систему лінійних рівнянь, розв’язком якої будуть значення logapi. Для цього виконаємо наступні кроки:
2.1. Обрати деяке ціле k, 0 £ k£ n - 1 та обчислити ak .
2.2. Спробувати представити значення ak у вигляді добутку чисел з S:
ak = , ci³ 0
Якщо така рівність знайдена, то записати рівняння:
k = (mod n)
2.3. Повторювати кроки 2.1. та 2.2. поки не отримаємо t + cлінійних рівнянь. Невелике ціле число c (1 £c£ 10) обирається таким чином, щоб складена система рівнянь мала єдиний розв’язок з великою ймовірністю (якщо скласти лише t рівнянь з t невідомими, то з великою ймовірністю два з цих рівнянь будуть залежними і тоді система буде мати більше одного розв’язку).
3. Розв’язати утворену систему рівнянь, отримати значення logapi, 1£i£t.
4. Обчислення logab.
4.1. Обрати деяке ціле k, 0 £ k£ n - 1 та обчислити b*ak .
4.2. Спробувати представити значення b*ak у вигляді добутку чисел з S:
b*ak = , di³ 0
Якщо такого представлення знайти не вдається, виконати знову 4.1. Інакше прологарифмірувавши останню рівність, отримаємо:
x = logab = ( - k) mod n
Приклад. Обчислити log212 в групі Z19*.
1. Нехай S = {2, 3, 5} – множникова основа.
2. Будуємо систему рівнянь для знаходження значень log2pi, де piÎS. Оскільки множина S містить 3 елементи, то достатньо отримати 3 лінійно незалежні рівняння.
k = 5: 25 (mod 19) º13 – не представимо у вигляді добутку чисел з S.
k = 7: 27 (mod 19) º14 – не представимо у вигляді добутку чисел з S.
k = 2: 22 (mod 19) º4 = 22. Перше рівняння: 2 = 2log22.
k = 10: 210 (mod 19) º17 – не представимо у вигляді добутку чисел з S.
k = 15: 215 (mod 19) º12 = 22 * 3. Друге рівняння: 15 = 2log22 + log23.
k = 11: 211 (mod 19) º15 = 3 * 5. Третє рівняння: 11 = log23 + log25.
3. Система рівнянь за модулем 18 (порядок Z19* дорівнює 18) має вигляд:
Її розв’язком буде:
log22 = 1, log23 = 13, log25 = 16
4. Обчислення log212.
k = 3: 12 * 23(mod 19) º 1 – не представимо у вигляді добутку чисел з S.
k = 7: 12 * 27 (mod 19) º16 = 24.
log212 + 7 º 4log22 (mod 18), log212 º (4log22 – 7) (mod 18) = 15.
Відповідь: log212 = 15.
Алгоритм Поліга – Хелмана
Алгоритм Поліга – Хелмана ефективно розв’язує задачу дискретного логарифма в групі G порядка n, якщо число n має лише малі прості дільники.
Нехай g, hÎG, |G| = ps, p – просте. Тоді значення x = loggh можна подати у вигляді:
x = x0 + x1p + x2p2 + … + xs-1ps-1
Піднесемо рівняння h = gxдо степеняps-1:
= = =
* * * … * = ,
оскільки = 1 (g – генератор групи, ps – її порядок).
Таким чином з рівності = знаходимо x0.
Далі маючи значення x0, x1, …, xi-1можна обчислити xiз рівняння
=
Приклад. Обчислити log37 в Z17*.
Необхідно розв’язати рівняння 3x = 7 в групі, порядок якої дорівнює 16 = 24.
Представимо x у двійковій системі числення: x = x0 + 2x1 + 4x2 + 8x3.
1. Обчислення x0.
Піднесемо рівняння 3x = 7 до степеня 23 = 8:
= 78, = -1,
* * * = -1.
Оскільки 316 (mod 17) º 1, тоостаннє рівняння прийме вигляд = -1. Враховуючи що 38 (mod 17) º -1, маємо: = -1, x0 = 1.
2. Обчислення x1.
Домножимо рівність = 7 на = 3-1 (mod 17) = 6, отримаємо:
= 7 * 6 або = 8.
Піднесемо рівняння до степеня 4: = 84, = -1, x1 = 1.
3. Обчислення x2.
1. D. Shanks. Class number, a theory of factorization and genera. In Proc. Symposium Pure Mathematics, vol.20, pp.415-440. American Mathematical Society, 1970.