Смекни!
smekni.com

Приклади складання рівняння лінії на площині за даними її геометричними властивостями Пряма на (стр. 1 из 2)

Пошукова робота

на тему:

Приклади складання рівняння лінії на площині за даними її геометричними властивостями. Пряма на площині. Площина. Пряма в просторі. Пряма і площина.

План

  • Приклади складання рівняння лінії на площині за даними її геометричними властивостями.
  • Рівняння прямої на площині.
  • Площина.
  • Пряма в просторі.
  • Кут між прямими, умови паралельності та перпендикулярності. Кут між площинами, умови паралельності та перпендикулярності.
  • Віддаль від точки до прямої на площині та від точки до площини.
  • Пряма та площина.

Пряма на площині

1. Рівняння прямої на площині

Рівняння першого степеня, що зв’язує координати точки на площині, - це рівняння

(3.3)

при умові

В декартовій системі координат на площині кожна пряма лінія може бути задана лінійним рівнянням і, навпаки, кожне лінійне рівняння (3.3) визначає пряму лінію .

Рівняння (3.3) називається загальним рівнянням прямої на площині.

Нехай точка лежить на прямій (). Це значить, що її координати задовольняють рівняння (3.7)

Вираховуючи із рівняння (3.7) дану рівність, одержимо рівняння прямої, що проходить через задану точку

(3.4)

Якщо довільна точка на прямій, то вектор повністю лежить на прямій а ліва частина рівності (3.8) виражає скалярний добуток векторів і Оскільки скалярний добуток цих векторів дорівнює нулю, то вони є перпендикулярні , а це значить, що вектор перпендикулярний прямій . Вектор, який перпендикулярний до прямої називається нормальним вектором прямої. Вектор який паралельний прямій, називається направляючим вектором прямої. Очевидно, що і, наприклад,

Нехай задана пряма Позначимо через радіус-вектор її початкової точки . Розглянемо тепер деяку точку , радіус-вектор якої позначимо через (рис.3.7). Вектор , початок якого лежить на прямій, паралельний прямій тоді і тільки тоді, коли його кінець ( точка ) також лежить на прямій. В цьому

Рис.3.7

випадку для точки знайдеться таке число (параметр), що

(3.5)

Рівняння (3.5) називається векторно-параметричим рівнянням прямої.

Нехай в загальному вигляді направляючий вектор має координати Записавши рівняння (3.5) в координатній формі, одержимо параметричні рівняння прямої на площині

(3.6)

Виключаючи із рівнянь (3.6) параметр одержимо канонічне рівняння прямої (3.7)

Із рівняння (3.17) одержимо

Позначимо . Тоді одержимо рівняння прямої, що проходить через задану точкув заданому напрямку

(3.8)

Очевидно, що де кут, що утворює пряма (вектор ) з

додатнім напрямом осі Величину називають кутовим коефіцієнтом прямої

Позначивши через із рівняння (3.8) одержимо рівняння прямої з кутовим коефіцієнтом

(3.9)

Нехай дві точки і лежать на прямій Тоді за напрямний вектор можна взяти вектор, що з’єднує ці дві точки Підставивши в рівняння (3.7)

Замість і координати вектора одержимо рівняння прямої, що проходить через дві заданих точки

(3.10)

Нехай задані точки перетину прямої з осями координат і Використавши рівняння (3.10), одержимо

або

(3.11)

Рівняння (3.11) називається рівнянням прямої у відрізках.

Пучком прямих на площині називається сукупність прямих, що проходять через фіксовану точку – пучка. Будемо вважати, що дві прямі і перетинаються

() в точці Рівняння

(3.12)

де називається рівнянням пучка прямих на площині.

2. Кут між прямими. Умови паралельності та перпендикулярності двох прямих

Нехай дві прямі і задані рівняннями

і . Позначимо через

і кути, які утворюють прямі і з додатнім напрямком осі (рис.3.8), а це кут між цими прямими.

Рис.3.8

Тоді а Оскільки, то

або (3.13)

Якщо прямі і паралельні, то їх кутові коефіцієнти рівні

Якщо прямі перпендикулярні, то , а тому

Можна обчислювати кут між двома прямими як кут між їх нормальними векторами і

(3.14)

3. Віддаль від точки до прямої

Нехай пряма задана рівнянням і точка

радіус-вектор якої Точка радіус-вектор якої направляючий вектор прямої Тоді

віддаль від точки до прямої можна розглядати як висоту паралелограма, побудованого на векторах і (рис.3.9).

Рис.3.9

Знайдемо площу паралелограма

= Але точка тому

Тоді одержимо:

(3.15)

Рівняння

(3.16)

називається нормальним рівнянням прямої на площині.

Приклад 1. Дві сторони паралелограма задані рівняннями і Діагоналі його перетинаються в початку координат. Написати рівняння двох інших сторін паралелограма та його діагоналей.

Р о з в ‘ я з о к. Знайдемо координати точки перетину сторін паралелограма

Нехай це точка (рис.3.). Точка точка перетину діагоналей (середина діагоналі ). Тоді і Очевидно також, що рівняння

сторони а рівняння сторони Оскільки паралельна то рівняння сторони шукаємо у вигляді

знаходимо із умови, що точка

і рівняння сторони

Аналогічно знайдемо рівняння сторони і

рівняння сторони Координати вершини шукаємо із системи рівнянь Аналогічно знаходимо координати вершини

Рівняння діагоналі


Рис.3.10

Рівняння діагоналі

Приклад 2. Написати рівняння прямої, що паралельна двом прямим і та проходить посередині між ними, якщо:

Р о з в ‘ я з о к. Оскільки то паралельні прямі і розташовані по одну сторону від початку координат, а тому і шукана пряма теж буде розташована по ту ж сторону від початку координат і

Рівняння прямої

Площина

3. Рівняння площини

Алгебраїчне рівняння першого степеня, що зв’язує координати точки в просторі має вигляд

(3.17)

при умові

В декартовій системі координат в просторі кожна площина може бути задана лінійним рівнянням (3.17) і, навпаки, кожне лінійне рівняння (3.17) в декартовій системі координат в просторі задає площину . Отже, площина – це алгебраїчна поверхня першого порядку.

Рівняння (3.17) називається загальним рівнянням площини.

Розглянемо точку, що лежить в площині

Тоді

Вираховуючи із рівняння (3.17) дану рівність, одержимо рівняння площини, що проходить через задану точку

. (3.18)

Якщо довільна точка на площині, то вектор повністю лежить в площині а ліва частина рівності (3.18) виражає скалярний добуток векторів і Оскільки скалярний добуток цих векторів дорівнює нулю, то вони є перпендикулярні , а це значить, що вектор перпендикулярний до площини(рис.3.11). Вектор, який перпендикулярний до площини називається нормальним вектором площини.

Розглянемо три точки, що лежать в площині (і не лежать на одній прямій)

Рис.3.11 Рис.3.12

Очевидно, що вектори ,

також будуть лежати в площині Тоді довільна точка буде належати цій площині, коли вектор буде лежати в площині Отже, вектори компланарні (рис.3.12). Якщо три вектори компланарні, то їх змішаний добуток дорівнює нулю ().

Записавши змішаний добуток трьох векторів в координатній формі, одержимо

(3.19)

Рівняння (3.19) називається рівнянням площини, що проходить через три заданих точки.

Нехай задані точки перетину площини з осями координат Тоді одержимо із рівняння (3.19)

або

. (3.20)

Рівняння (3.20) називається рівнянням площини у відрізках.

Зв’язкою площин називається сукупність площин, що проходять через фіксовану точку – центр зв’язки. Нехай площини з рівняннями перетинаються в єдиній точці Рівняння зв’язки площин

з центром в точці при умові, що

Пучком площин називається сукупність площин, що проходять через фіксовану пряму – вісь пучка. Рівняння пучка площин має вигляд

при умові де в дужках стоять ліві частини рівняння двох площин пучка.

Нехай ми маємо три площини, задані рівняннями

Щоб знайти їх спільні точки, треба розв’язати систему заданих трьох рівнянь, що описують ці площини. Якщо система має єдиний розв’язок, то площини мають спільну точку (перетинаються в одній точці).

Якщо розв’язки не існують, то спільних точок немає. У випадку безлічі спільних точок можливі два випадки: або всі три