Атмосфера. В верхних слоях атмосферы обнаружен водород и гелий. Они составляют 80 и 19 % атмосферы на этой высоте, соответственно. Также наблюдаются следы метана. Заметные полосы поглощения метана встречаются на длинах волн выше 600 нм в красной и инфракрасной части спектра. Как и в случае с Ураном, поглощение красного света метаном — часть того, что придаёт атмосфере Нептуна синий оттенок, хотя яркая лазурь Нептуна отличается от более умеренного аквамаринового цвета Урана. Так как содержание метана в атмосфере Нептуна не сильно отличается от содержания метана в атмосфере Урана, полагают, что всё же некий пока неизвестный компонент атмосферы способствует синему цвету. Атмосфера Нептуна подразделяется на 2 основные области: более низкая тропосфера, где температура падает с высотой, и стратосфера, где температура с высотой увеличивается. Граница между ними, тропопауза, находится на уровне давления в 0,1 баров. Стратосфера замещается термосферой на уровне давления ниже, чем 10-4 — 10-5 микробаров. Термосфера постепенно переходит в экзосферу. Модели тропосферы Нептуна позволяют полагать, что она состоит из облаков переменных составов, в зависимости от высоты. Облака верхнего уровня находятся на уровне давления ниже одного бара, где температура подходящая для конденсации метана. При давлении между одним и пятью барами, как полагают, формируются облака аммиака и сульфида водорода. При давлении более 5 баров облака могут состоять из того же аммиака, сульфида аммония, сульфида водорода и воды. Более глубоко, при давлении в приблизительно 50 бар, могут быть облака из водяного льда, там температура равна 0 C°, не исключено, что и там могут быть найдены облака из аммиака и сульфида водорода. Высотные облака Нептуна наблюдались по отбрасываемым ими теням на непрозрачный облачный слой ниже уровнем. Среди них выделяются облачные полосы, которые «обёртываются» вокруг планеты на постоянной широте. У этих периферических групп ширина достигает 50-150 километров, и находятся они на 50-110 км выше основного облачного слоя. Изучение спектра Нептуна позволяет предполагать, что его более низкая стратосфера затуманена из-за конденсации продуктов ультрафиолетового фотолиза метана, таких, как этан и ацетилен. В стратосфере также обнаружены следы циановодорода и угарного газа. Стратосфера Нептуна более тёплая, чем стратосфера Урана из-за более высокой концентрации углеводородов. По невыясненным причинам, термосфера планеты имеет аномально высокую температуру в приблизительно 750 К. Для столь высокой температуры планета слишком далека от Солнца, чтобы оно могло так разогреть термосферу ультрафиолетовой радиацией. Возможно, это следствие атмосферного взаимодействия с ионами в магнитном поле планеты. Другой кандидат на механизм разогревания: волны гравитации из внутренних областей планеты, которые рассеиваются в атмосфере. Термосфера содержит следы угарного газа и воды, которая попала туда, возможно, из внешних источников, таких, как метеориты и пыль.
Магнитосфера. И своей магнитосферой, и магнитным полем, сильно наклонённым на 47° относительно его оси вращения, и распространяющегося на 0,55 от радиуса планеты (приблизительно 13500 км), Нептун напоминает Уран. До прибытия к Нептуну «Вояджера — 2» учёные полагали, что наклонённая магнитосфера Урана была результатом его «бокового вращения». Однако после сравнения магнитных полей этих двух планет учёные теперь полагают, что такая странная ориентация магнитосферы в пространстве может быть вызвана приливами во внутренних областях. Такое поле может появиться благодаря конвективным перемещениям жидкости в тонкой сферической прослойке электропроводных жидкостей этих двух планет (предполагаемая комбинация из аммиака, метана и воды), что приводит в действие гидромагнитное динамо. Магнитное поле Нептуна имеет комплексную геометрию, которая включает относительно большие включения от не биполярных компонентов, включая сильный квадрупольный момент, который по мощности может превышать дипольный. В противоположность — у Земли, Юпитера и Сатурна относительно небольшой квадрупольный момент, и их поля менее отклонены от полярной оси. Головная ударная волна Нептуна, где магнитосфера начинает замедлять солнечный ветер, проходит на расстоянии в 34,9 планетарных радиусов. Магнитопауза, где давление магнитосферы уравновешивает солнечный ветер, находится на расстоянии в 23—26,5 радиусов Нептуна. Хвост магнитосферы длится примерно до расстояния в 72 радиуса Нептуна, и очень вероятно, что гораздо дальше.
Кольца планеты
Самое первое сообщение о кольце вокруг Нептуна сделал британский астроном Уильям Ласселл в октябре 1846 года - спустя несколько дней после открытия этой планеты. Наблюдал он кольцо неоднократно и лишь через шесть лет пришел к выводу, что это - оптическая иллюзия, обусловленная недостатком его нового телескопа. Первый реальный намек на то, что Нептун окружен кольцами, появился почти полтора века спустя. В 1984 году французский астроном Андрэ Браик проводил наблюдения Нептуна на обсерватории «Серро-Тололо», расположенной в Чили. Обнаружилось, что при прохождении Нептуна на фоне далекой звезды свет от нее трижды прерывался какими-то объектами. Галилей наблюдал Нептун в 1612 году, полагая, что это обычная звезда . Эти объекты были названы дугами (или арками), и их стали считать участками несформировавшегося кольца. Вещество в них распределено неравномерно: плотность резко падает у концов дуги. Представить себе стабильное скопление частиц в одной части орбиты очень трудно. Ведь периоды обращения независимых частиц хоть немного, но отличаются, так что все скопление должно постепенно растянуться вдоль орбиты и превратиться в кольцо. Пять лет спустя на фотографиях, полученных со станции «Вояджер-2», действительно были обнаружены кольца, окружающие планету. Их оказалось шесть, и все они очень темные, отражают менее 3% падающего на них света. А вот при взгляде «сзади», с неосвещенной стороны, кольца выглядят гораздо светлее. Этот парадокс, обнаружившийся на снимках с «Вояджера-2», объясняется тем, что кольца состоят из очень мелких темных частиц, пылинок, плохо отражающих свет назад, но из-за своей малости хорошо рассеивающих его вперед. Также аппарат сфотографировал уникальное образование - три плотные яркие арки, нанизанные на непрерывное узкое и прозрачное пылевое колечко. Внутри арок видна цепь отдельных сгустков на расстоянии нескольких сот километров друг от друга. Исследование арок показывает, что в середине они содержат уплотнение шириной 15 км, окруженное прозрачным пылевым шлейфом шириной 50 км. Сложные расчеты позволили сделать вывод о том, что арки Нептуна представляют собой цепочки ранее неизвестных науке эллиптических вихрей антициклонического типа, состоящих из твердых частиц. Размеры самых крупных частиц, видимо, достигают нескольких сот метров. Эти уникальные вихри названы эпитонами; они сложным образом взаимодействуют с ближайшим спутником (Галатеей), между собой и с непрерывным пылевым кольцом.
Кольца Нептyна получили названия в честь астрономов, причастных к открытию этой планеты. Самое удаленное от Нептуна кольцо называется Адамс, оно узкое (50 км), но ярче остальных. Затем следует блеклое безымянное кольцо шириной 500 км, внутри которого движется небольшой, диаметром 180 км, спутник Галатея. Еще ближе к планете расположено самое широкое (4 000 км) и наиболее прозрачное кольцо Ласселл, к которому вплотную примыкают более яркие кольца шириной по 100 км - внешнее названо Араго, а внутреннее - Леверье. Далее находятся орбиты трех небольших спутников - Деспины, Талассы и Наяды, а затем - самое ближнее к планете кольцо Галле, не особенно яркое, но широкое (2 000 км). Наиболее ярким участкам, так называемым дугам, в пределах «английского» кольца Адамс присвоены французские названия Liberte, Egalite, Fraternite и Courage (Свобода, Равенство, Братство и Отвага). Объясняется это тем, что их открыл французский астроном Андрэ Браик.
Спутники
У Нептуна на данный момент известно 13 спутников. Крупнейший из них весит более, чем 99,5 процентов от масс всех спутников Нептуна, вместе взятых, и лишь он массивен настолько, чтобы стать сфероидальным. Это Тритон, открытый Уильямом Ласселом всего через 17 дней после открытия Нептуна. В отличие от всех остальных крупных спутников планет в Солнечной системе, Тритон обладает ретроградной орбитой. Возможно, он был захвачен гравитацией Нептуна, а не сформировался на месте, и, возможно, когда-то был карликовой планетой в поясе Койпера. Он достаточно близок к Нептуну, чтобы быть зафиксированным в синхронном вращении.
Второй (по времени открытия) известный спутник Нептуна — Нереида, спутник неправильной формы с одним из самых высоких эксцентриситетов орбиты среди прочих спутников Солнечной системы.
С июля по сентябрь 1989 года «Вояджер-2» обнаружил 6 новых спутников Нептуна. Среди них примечателен спутник Протей неправильной формы. Он примечателен тем, каким большим может быть тело его плотности, без стягивания в сферическую форму собственной гравитацией. Второй по массе спутник Нептуна составляет лишь четверть процента от массы Тритона. Четыре самые внутренние спутника Нептуна — Наяда, Таласса, Деспина, и Галатея. Их орбиты так близки к Нептуну, что находятся в пределах его колец. Следующая за ними, Ларисса, была первоначально открыта в 1981 году при покрытии звезды. Сначала покрытие было приписано дугам колец, но когда «Вояджер-2» посетил Нептун в 1989 году, выяснилось, что покрытие было произведено спутником. Между 2002 и 2003 годом было открыто ещё 5 спутников Нептуна неправильной формы, что было анонсировано в 2004 году. Поскольку Нептун был римским богом морей, его спутники называют в честь меньших морских божеств.