Смекни!
smekni.com

Когнитивная психология Солсо Роберт Л (стр. 40 из 43)

Более старые, и намного более простые, алфавитно-цифровые системы распознавания в рамках ИИ основывались на понятии эталона. Паттерн букв и цифр хранился в памяти компьютера. Когда компьютер «видит» цифру или букву, он «читает» ее, сравнивая с паттерном, например букву A с эталоном А. Если установлено соответствие, буква идентифицируется правильно. Даже описанные ранее методы последовательного и параллельного поиска были явно упрощенными. Более новые, основанные на принципах нервных процессов компьютерные модели фактически способны к «изучению» паттернов. Некоторые из этих компьютеров могут изучать, хранить и распознавать паттерны. Одна такая программа, названная DYSTAL (DYnamically STable Associative Learning— «Динамически устойчивое ассоциативное научение»), успешно усваивает буквы алфавита и последовательности букв и, что, возможно, более важно, распознает их даже при предъявлении только части паттерна (рис. 16.4).

По мнению Алкона, DYSTALделает это так же, как мы узнаем знакомое лицо по нескольким линиям эскиза. Система «изучает» паттерн в том смысле, что предварительно в нее не было заложенной никакой связи между информацией на входе и на выходе. Тем не менее связь была установлена через больший вес, приписываемый определенным элементам (участкам), которые участвуют в процессе распознавания.

Другая новаторская особенность этой системы состоит в том, что она может вместить большое количество элементов, не задействуя значительных ресурсов компьютера. Во многих других сетевых системах каждая единица связана с каждой дру-

554 Глава 16, Искусственный интеллект


Рис. 16.4. Распознавание паттерна искусственной сетью Алкона происходит согласно многим из правил, демонстрируемых биологическими системами.

Когда сеть обучена распознавать паттерн, такой как строчная буква а, изображенная в верхней части рисунка, воспринимающим участкам, участвующим в распознавании, придается больший «вес», чем тем, которые не участвуют в распознавании, то есть их возбудимость повышается. Здесь синаптический вес представлен возвышением элементов в слоях. Повышение возбудимости облегчает образование связей между нейронами, участвующими в воспоминании, когда предъявлена только часть паттерна. (Этот рисунок помог сделать Томас П. Воджи из Экологического научно-исследовательского института Мичигана.) Источник: Alkon, 1989

Восприятие и искусственный интеллект 555

Язык и искусственный интеллект 559

скими правонарушениями, но она может поставить довольно точный диагноз тринадцатилетней девочке с высокой температурой, болью в животе и повышением уровня лейкоцитов в крови. Одна такая программа, неудачно названная Puff, является экспертной системой, разработанной для диагностики болезней легких, например рака легких; ученые заявляют, что точность ее работы приблизительно равна 89 %, — близко к точности диагноза, поставленного опытными врачами. Эти системы особенно популярны в промышленности, армии и в исследованиях космоса. Они довольно хорошо справляются со своей работой. Кроме того, они не бастуют и не требуют больше денег, не возражают, чтобы их разбили вдребезги, не требуют средств для поддержания жизни и их очень любят тупицы.

Язык и искусственный интеллект

Психологи считают язык основным проявлением когнитивных процессов. Он больше, чем все другие виды человеческого поведения, отражает мышление, восприятие, память, решение задач, интеллект и научение. И ввиду его важности для основных психологических принципов язык представляет большой интерес для специалистов по ИИ.

Артур Кларк в наиболее полном виде — как обмен мнениями между Дейвом (человеком) и фантастическим компьютером Хэлом — предвосхитил связь способности к языку и сферы решения задач с искусственным интеллектом:

— Я хочу сделать это сам, Хэл, — сказал он, — пожалуйста, передай мне управление.

— Слушай, Дейв, у тебя еще куча работы. Я предлагаю, чтобы ты оставил это мне.

— Хэл, переключи анабиоз на ручное управление.

— Насколько я могу судить по обертонам твоего голоса, Дейв, ты серьезно расстроен. Почему бы тебе не принять таблетку от стресса и не отдохнуть немного?

Первая машина для автоматического сочинительства

Ниже приведена иллюстрация «думающей машины» Джонатана Свифта из «Путешествий Гулливера». Свифт язвительно предположил, что книги и другую литературу можно писать, поворачивая соответствующие ручки. Некоторые «современные программы для сочинительства» генерируют научную фантастику, которая воспринимается как настоящая литература. См. журнал Omni для примеров.

1Puff(англ.)— «выдох», «дыхание», «пыхтение», а также «опухоль». — Примеч. перев.

560 Глава 16. Искусственный интеллект

Терри Седжновски. Разработанные им нейронные сети содержали скрытый слой, который соответствует промежуточным нейронам

Язык и искусственный интеллект 563

Рис. 16.8. Программа NETtalkчитает вслух: она переводит буквы в фонемы.

Каждая единица-буква посылает сигналы через имеющий определенный вес связи ко всем «скрытым» единицам; если общий сигнал, достигающий скрытой единицы, превышает некоторый порог, единица генерирует разряд, посылая сигналы к единицам-фонемам. Информация на выходе - фонема, которая получает самый сильный общий сигнал. Когда «преподаватель» говорит программе NETtalk, что она допустила ошибку - здесь она только что прочитала m вместо n, - она исправляет ошибку, регулируя все веса связей согласно определенному алгоритму научения. Источник: Heppenheimer, 1988

Как признают Седжновски и другие исследователи, в разговоре между машиной и человеком большое значение имеет контекст. Теперь мы рассмотрим другую важную проблему — проблему значения и искусственного интеллекта.

Значение и искусственный интеллект

Несмотря на то что некоторые из фраз этого компьютера достаточно хороши, чтобы обманывать кого-то некоторое время, он не способен обманывать всех и постоянно. Компьютеры терпят неудачу не из-за недостатка памяти на слова — она почти неограниченна, и не из-за недостаточной способности генерировать значимые предложения — она весьма обширна, и не из-за плохого произношения букв — оно вполне приемлемо, а из-за того, что они недостаточно понимают используемый язык.

На ранних этапах развития ИИ многие думали, что компьютеры смогут оказать значительную помощь при переводе с языка на язык. Просто загрузить в компьютер словарные эквиваленты (например, necklace = «ожерелье», cloth= «сукно», pocketbook= «записная книжка», pink= «розовый» и т. д.), ввести один язык и получить на выходе другой. Однако, даже если делать перевод один к одному в контексте синтаксической информации, результаты получаются довольно странные. Например, когда пассаж из Библии (возможно, апокрифический) Thespiritiswilling, butthefleshisweak(«Стремится дух, да плоть слаба») перевели на русский

564 Глава 16, Искусственный интеллект


Рис. 16.10. Вы можете решить эту задачу? Эти объекты были рассортированы на два класса, на что указывают серые или черные рамки.

По какому признаку они различаются? Компьютеры, запрограммированные обучаться на примерах, часто сталкиваются с подобными загадками. Использование машиной подсказок делает обучение более быстрым и легким. Подсказку, которая поможет решить эту задачу, см. на рис. 16.11

Решение задач, игры и искусственный интеллект 569


Рис. 16.11. Зрительная подсказка, которая помогает и машинам, и людям в решении задачи на рис. 16.10.

Нарисованная ось дает понять, что у верхних шести объектов отсутствует зеркальная симметрия, имеющаяся у нижних трех объектов. Этот признак отличает объекты в черных и серых рамках

570 Глава 16. Искусственный интеллект

Гроссмейстер на основе углерода против чемпиона на основе кремния

Насколько хорошо компьютер может играть в шахматы? Как мы видели, лучший компьютер и программа DeepBlueвыиграли у Гарри Каспарова, которого многие считают лучшим игроком всех времен. Теперь существует сколько угодно компьютеров, которые могут выиграть у кого угодно, кроме лучших игроков, один из таких компьютеров - мой собственный Pentium, и можно смело предположить, что и у вас есть такой же. Чем полезно наблюдение за машиной, обучающейся играть в шахматы? Прежде всего мы можем узнать, что на основе анализа паттернов машина способна делать только грубые суждения о том, какие признаки важны. Компьютеру не хватает именно проницательности, однако он компенсирует это способностью к быстрой и объемной математической деятельности типа «поиск и сравнение». Человеческая способность извлекать значимые признаки из чрезвычайно сложного мира сенсорной информации, чтобы формировать абстракции этих признаков, преобразовывать эти абстракции в ассоциативные структуры более высокого уровня и строить сложные когнитивные планы, в то же время согласуя эти внутренние действия с внешней реальностью, может быть лишь приблизительно реализована в компьютере. Но даже эта обширная способность к поиску недостаточна, чтобы предусмотреть все возможные случайности, поэтому развитие стратегий игры - важная часть современных программ.