pryriz.org.ua/.../testirovanie.htm
Методы тестирования (проверки) электронных компонентов
При ремонте любого электронного изделия приходится сталкиваться с проверкой радиоэлементов. При кажущейся простоте этот процесс имеет свои особенности. Возникают вопросы, касающиеся тестирования и тогда, когда радиолюбитель решает заменить старенький тестер на новый, с цифровой индикацией, когда появляются новые типы полупроводниковых приборов, таких как цифровые транзисторы, и т.д. В этой главе приведены ответы на многие вопросы, связанные с тестированием радиоэлементов.
В главе изложены основные вопросы их тестирования как с применением стрелочных или аналоговых мультиметров (АММ), так и с применением цифровых мультиметров (ЦММ).
Тестирование конденсаторов
Тестирование конденсаторов при использовании мультиметров, имеющих режим проверки конденсаторов, проблем не вызывает. Если же мультиметр такого режима не имеет, то для проверки используется омметр (только при использовании АММ). Он позволяет определить пробой или утечку конденсатора. К омметру, включенному на верхнем пределе измерения, подключают конденсатор. О про бое свидетельствует низкое (несколько Ом) сопротивление конденсатора. Если конденсатор исправен, то стрелка АММ сначала отклонится (если емкость конденсатора примерно 0,47 мкФ и более), а затем вернется на нулевую отметку. Величина и время отклонения стрелки зависит от емкости конденсатора по принципу: чем больше, тем больше. При проверке электролитических конденсаторов следует соблюдать полярность подключения мультиметра. Если же стрелка отклонилась на какую-то величину и АММ показывает какое-то сопротивления,. то это говорит об утечке конденсатора. ЦММ такие измерения производить не позволяет. Этот способ проверки не обеспечивает 100%-й гарантии того, что если отклонений при проверке не выявлено, то конденсатор исправен, и требует обязательного выпаивания его из схемы. Главным критерием работы конденсатора является выполнение им своих функций в работающей схеме. Полученные в результате такой проверки результаты могут говорить об исправности конденсатора, однако он может быть неисправен и работать в схеме не будет.
Оптимальным способом быстрой проверки емкостей, без выпаивания их из схемы, на работоспособность является следующий. Необходимо произвести внешний осмотр схемы. Конденсаторы с раздутым корпусом, с потеками электролита, коррозией у выводов, с греющимся во время работы корпусом необходимо проверить заменой. Особенно критична такая проверка для импульсных блоков питания. Дополнительной информацией о неисправностях конденсаторов фильтров питания является пониженное напряжение питания, специфические помехи на изображении телевизора, повышенный уровень фона аудио тракта. Хороший результат дает подключение параллельно проверяемому исправного конденсатора (подключать следует при отключенном питании устройства). При неисправностях конденсаторов в импульсных схемах, например в задающем генераторе кадровой развертки телевизора, проверку конденсатора на работоспособность можно про извести путем подключения заведомо исправного и по характеру изменений на экране принимают решение о необходимости его замены. Наиболее часто выходят из строя электролитические конденсаторы, иногда полиэтилентерефталатные в высоковольтных цепях строчной развертки. Редко керамические, слюдяные конденсаторы. Наилучшие результаты при тестировании конденсаторов дает использование простого генератора импульсов, построенного на интегральном таймере типа КР1006ВИ1 (зарубежные аналоги — таймеры серии 555). При проверке конденсатор включают во времязадающую цепочку и по периоду следования импульсов при известном значении R вычисляют значение емкости по формуле:
С = T / R
Следует быть очень осторожными при проверке конденсаторов в высоковольтных схемах (схемы строчной развертки, импульсных блоков питания). После выключения устройства с помощью разрядной цепи конденсаторы необходимо разрядить. Для этого используют разрядную цепь из резистора сопротивлением 2 кОм...1 МОм, соединенного одним выводом с корпусом или общим проводом
На рис. 8.1 приведена схема разрядника со светодиодной индикацией.
Рис. 8.1
В качестве включенных встречно-параллельно диодов применяются кремниевые диоды общего назначения. Падение напряжения на диоде в прямом направлении составляет около 0,75 В, поэтому на сборке из четырех диодов оно составит около 2.8...3 В. В пробнике применяется два светодиода для того, чтобы обеспечить индикацию независимо от полярности его включения.
Говоря о проверке электролитических конденсаторов, следует упомянуть об их так называемом эквивалентном последовательном сопротивлении (ЭПС). На его величину влияет, а с течением времени не в лучшую сторону, состояние обкладок конденсатора, внутренних контактов, состояние электролита. При соответствии емкости номиналу иногда оказывается, что ЭПС возросло, а это приводит к тому, что схема либо не работает, либо работает неправильно. За рубежом выпускаются специальные приборы для проверки ЭПС, но на практике оценить ЭПС электролитического конденсатора можно довольно просто с помощью осциллографа. Для этого следует подать на осциллограф с генератора импульсов или звукового генератора сигнал частотой около 100 кГц (некритично) и включить в разрыв сигнального провода испытуемый конденсатор, если он используется в схеме как разделительный, или замкнуть сигнальный провод через испытуемый конденсатор на общий провод, если он используется как конденсатор фильтра. В первом случае уровень сигнала не должен ни измениться, ни исказиться. Во втором случае вместо меандра или синусоиды наблюдается прямая линия. Если этого не происходит — конденсатор необходимо заменить.
Тестирование полупроводниковых диодов
При тестировании диодов с помощью АММ следует использовать нижние пределы измерений. При проверке исправного диода сопротивление в прямом направлении составит несколько сотен Ом, в обратном направлении — бесконечно большое сопротивление. При неисправности диода АММ покажет в обоих направлениях сопротивление близкое к 0 или разрыв при пробое диода. Сопротивление переходов в прямом и обратном направлениях для германиевых и кремниевых диодов различно.
Проверка диодов с помощью ЦММ производится в режиме их тестирования. При этом, если диод исправен, на дисплее отображается напряжение на р- n переходе при измерении в прямом направлении или разрыв при измерении в обратном направлении. Величина прямого напряжения на переходе для кремниевых диодов составляет 0,5...0,8 В, для германиевых — 0,2...0,4 В. При проверке диода с помощью ЦММ в режиме измерения сопротивления при проверке исправного диода обычно наблюдается разрыв как в прямом, так и в обратном направлении из-за того, что напряжение на клеммах мультиметра недостаточно для того, чтобы переход открылся.
Тестирование транзисторов
В общем тестирование транзисторов аналогично тестированию диодов, так как саму структуру транзистора p - n -р или п-р-п можно при проверке представить как два диода (рис. 8.2), с соединенными вместе либо выводами катода, либо анода, представляющими собой вывод базы транзистора. При тестировании ЦММ прямое напряжение на переходе исправного транзистора составит 0,45...0,9 В.
Дополнительно следует проверять сопротивление (падение напряжения) между коллектором и эмиттером, которое для исправного транзистора должно быть определено как очень большое, за исключением описанных ниже особенностей. Однако есть свои особенности и при проверке транзисторов. Н а них мы и остановимся подробнее.
Одной из особенностей является наличие у некоторых типов мощных. транзисторов встроенного демпферного диода, который включен между коллектором и эмиттером, а также резистора номиналом около 50 Ом между базой и эмиттером. Это характерно в первую очередь для транзисторов выходных каскадов строчной развертки. Из-за этих дополнительных элементов нарушается обычная картина тестирования транзисторов. При проверке таких транзисторов следует сравнивать проверяемые параметры с такими же параметрами заведомо исправного однотипного транзистора. При проверке ЦММ транзисторов с резистором в цепи база-эмиттер напряжение на переходе Б-Э будет близким или равным 0 В.
Другими "особенными" транзисторами являются транзисторы, включенные по схеме Дарлингтона (составные транзисторы). Внешне они выглядят как обычные,
Тестирование цифровых транзисторов затруднено. И если с помощью АММ можно наблюдать отличия в прямом и обратном сопротивлениях переходов, то проверка с помощью ЦММ результатов не дает. В этом случае лучший вариант при сомнениях в работоспособности — замена на заведомо исправный транзистор.
Тестирование однопереходных и программируемых однопереходных транзисторов
Однопереходный транзистор (ОПТ ) отличается наличием на его вольтамперной характеристике участка с отрицательным сопротивлением. Наличие такого участ ка говорит о том, что такой полупроводниковый прибор может использоваться для генерирования колебаний (ОПТ , туннельные диоды и др.).
ОПТ используется в генераторных и переключательных схемах. В отечественной литературе автор не встречал понятия "программируемый ОПТ ", только — ОПТ. Однако ввиду большой насыщенности рынка зарубежной электронной техникой и элементной базой следует научиться их отличать. Это несложно: общим для них является трехслойная структура (как у любого транзистора) с двумя р- n переходами;