Економічний зміст похідної.
Використання поняття похідної в економіці.
Розглянемо задачу про продуктивність праці. Нехай функція и = и(t) відображає кількість виробленої продукції uза час ti необхідно знайти продуктивність праці в момент t0.
За період часу від t0 до t0 + t кількість виробленої продукції зміниться від значення u0 = u(t0) до значення u0 + u = u(t0+t); тоді середня продуктивність праці за цей період часу zсер=. Очевидно, що продуктивність праці в момент t0 можна визначити як граничне значення середньої продуктивності за період часу від t0 до t0 + t при t- 0 , тобто
Таким чином, продуктивність праці є похідна від обсягу виробленої продукції по часу.
Розглянемо ще одне поняття, яке ілюструє економічний зміст похідної.
Витрати виробництва yбудемо розглядати як функцію кількості продукції х, що виробляється. Нехай х — приріст продукції, тоді y — приріст витрат виробництва і - середній приріст витрат виробництва продукції на одиницю продукції. Похідна у' = — виражає граничні витрати виробництва і характеризує наближено додаткові затрати на виробництво одиниці додаткової продукції.
Граничні витрати залежать від рівня виробництва (кількість продукції, що випускається) х і визначаються не постійними виробничими затратами, а лише змінними (на сировину, паливо та ін.). Аналогічним чином можуть бути визначені гранична виручка, граничний доход, граничний продукт, гранична корисність, гранична продуктивність та інші граничні величини.
Застосування диференціального числення для дослідження економічних об'єктів та процесів на основі аналізу цих граничних величин дістало назву граничного аналізу. Граничні величини характеризують не стан (як сумарна чи середня величини), а процес зміни економічного об'єкта. Таким чином, похідна виступає як швидкість зміни деякого економічного об'єкта (процесу) за часом або відносно іншого об'єкта дослідження. Але необхідно врахувати, що економіка не завжди дозволяє використовувати граничні величини в силу неподільності багатьох об'єктів економічних розрахунків та перервності (дискретності) економічних показників в часі (наприклад, річних, квартальних, місячних та ін.). Водночас у деяких випадках можна відокремитись від дискретності показників і ефективно використовувати граничні величини.
Розглянемо, як приклад, співвідношення між середнім та граничним доходом в умовах монопольного та конкурентного ринків.
Сумарний доход (виручка) від реалізації продукції rможна визначити як добуток ціни одиниці продукції р на кількість продукції q, тобто r= pq.
В умовах монополії одна або декілька фірм повністю контролюють пропозицію певної продукції, а отже і її ціну При цьому, як правило, зі збільшенням ціни попит на продукцію падає. Вважаємо, що цей процес проходить по прямій, тобто крива попиту р (q) є лінійна спадаюча функція p = aq + b, де а < 0, b>0 . Звідси сумарний доход від реалізованої продукції складає r = (aq + b)q = aq2 +bq(див. рис. 4.22). В цьому випадку середнійдоход на одиницю продукції rсер = , а граничний прибуток, тобтододатковий доход від реалізації одиниці додаткової продукції, складатиме (див. рис. 4.22). Звідси, в умовах монопольного ринку зі зростанням кількості реалізованої продукції граничний прибуток зменшується, внаслідок чого відбувається зменшення (з меншою швидкістю) середнього прибутку.
В умовах досконалої конкуренції, коли на ринку функціонує велика кількість учасників і кожна фірма не спроможна контролювати рівень цін, стабільна реалізація продукції можлива при домінуючій ринковій ціні, наприклад, р = b. При цьому сумарний прибуток складатиме r = bqi відповідно середній прибуток rсер = ; граничний прибуток (див. рис. 4.23). Таким чином, в умовах ринку вільної конкуренції, на відміну від монопольного ринку, середній та граничний прибутки збігаються.
Для дослідження економічних процесів та вирішення інших прикладних задач використовується поняття еластичності функції.
Означення: Еластичністю функції Еx(y) називається границя відношеннявідносного приросту функції удо відносного приросту змінної х при х- 0:
(4.21)
Еластичнісіь функції наближено відображає, на скільки відсотків зміниться функція у =f (х) при зміні незалежної змінної х на 1%.
Визначимо геометричний зміст еластичності функції. За означенням(4.21) , де — тангенс кута нахилу дотичної в точці М (x, у)(див рис. 4.24). Враховуючи, що з трикутника MBNMN = х , MC = y, а з подібності трикутників MBNта АМС , тобто еластичність функції (за абсолютною величиною) дорівнює відношенню відстаней по дотичній від даної точки графіка функції до точок її перетину з осями Ох та Оу. Якщо точки перетину дотичної до графіка функції А іВ знаходяться по одну сторону від точки М, то еластичність Ех(у)додатня (див. рис. 4.24), якщо по різні сторони, то Ех(у) відмінна (див. рис. 4.25).
Властивості еластичності функції:
1. Еластичність функції дорівнює добутку незалежної змінної на темп зміни функції Ту = (lny)’ =, тобто
2. Еластичність добутку (частки) двох функцій дорівнює сумі (різниці)еластичностей цих функцій:
3. Еластичності взаємообернених функцій — взаємообернені величини:
(4.22)
Еластичність функції застосовується при аналізі попиту та пропозиції. Наприклад, еластичність попиту у відносно ціни х (або доходу х) — коефіцієнт, що визначається за формулою (4.21) і наближено відображаючий, на скільки відсотків зміниться попит (обсяг пропозиції) при зміні ціни (або доходу) на 1%.
Якщо еластичність попиту (за абсолютною величиною) , то попит вважають еластичним, якщо — нееластичпим відносно ціни (або доходу). Якщо , то мова йде про попит з одиничною еластичністю.
Визначим, наприклад, як впливає еластичність попиту відносно ціни на сумарний прибуток z = pqпри реалізації продукції. Вище ми вважали криву попиту р = p(q) — лінійною функцією; тепер припустимо, що р = p(q) — довільна функція. Знайдемо граничний прибуток
Відповідно з формулою (4.22) для еластичності взаємообернених функцій еластичність попиту відносно ціни обернена еластичності ціни відноснопопиту, тобто Еq(р)=, а також те, що , отримаємо придовільній кривій попиту
(4.23)
Якщо попит не є еластичним, тобто < 1 , то відповідно до (4.22) граничний доход буде від'ємний при будь-якій ціні; якщо попит еластичний, тобто > 1 , то граничний прибуток додатний. Таким чином, для нееластичного попиту зміна ціни та граничного прибутку відбуваються в одному напрямку, а для еластичного попиту — в різних. Це означає, що зі зростанням ціни для продукції еластичного попиту сумарний прибуток від реалізації продукції збільшується, а для товарів нееластичного попиту — зменшується. На рис. 4.22 на кривих прибутків виділені області еластичного та нееластичного попиту.
Приклад: Залежність між витратами виробництва у і обсягом продукції х, що випускається, визначається функцією у = 50х - 0,05х3(грош. од.). Визначити середні та граничні витрати за умови, що обсяг продукції 10 одиниць.
Розв'язок: Функція середніх витрат (на одиницю продукції) виражається відношенням при х = 10 середні витрати (на одиницю продукції) дорівнюють (грош. од.). Функція граничних витрат виражається похідною у'(x) = 50-0,15x2; при х = 10 граничні витрати складають у'(10)= 50-0,15·102 =35 (грош. од.). Отже, якщо середні витрати на виробництво одиниці продукції складають 45 грош. од., то граничні витрати, тобто додаткові затрати на виробництво додаткової одиниці продукції за умови даного рівня виробництва (обсягу продукції, що випускається 10 од.), складають 35 грош. од.
Приклад: Залежність між собівартістю одиниці продукції у (тис. грош. од.) та випуском продукції х (млрд. грош, од.) виражається функцією у=0,5х+80. Знайти еластичність собівартості за умови випуску продукції в розмірі 60 млрд. грош. од.
Розв'язок: За формулою (4.21) еластичність собівартості
При х = 60 , тобто при виробництві продукції в розмірі 60 млн. грош. од., збільшення її на 1% викличе зменшення собівартості на 0,6%.
Приклад: За допомогою досліду були встановлені функції попиту та пропозиції , де qта s — кількість товарів, відповідно що купується і пропонується для продажу за одиницю часу, р — ціна товару. Знайти: а) рівноважну ціну, тобто ціну, за якої попит та пропозиція врівноважуються; б) еластичність попиту та пропозиції для цієї ціни; в) зміну доходу при збільшенні ціни на 5% від рівноваженої.
Розв'язок: а) Рівноважна ціна визначається з умови q = s, , звідки р = 2, тобто рівноважна ціна дорівнює 2 грош. од. б) Знайдемо еластичності попиту та пропозиції за формулою (4.21):
Для рівноважної ціни р = 2 маємо Ер=2(q) = -0,3, Ep=2(s) = 0,8 .
Так як отримані значення еластичності за абсолютною величиною менші 1, то попит і пропозиція даного товару за рівноважної (ринкової) ціни нееластичні відносно ціни. Це означає, що зміна ціна не приведе до різкої зміни попиту та пропозиції. Так, при збільшенні ціниp на 1% попит зменшиться на 0,3%, а пропозиція збільшиться на 0,8%. в) При збільшенні ціни р на 5% від рівноважної попит зменшиться на 5 • 0,3 = 1,5%, тобто прибуток зросте на 3,5%.