Смекни!
smekni.com

Задачі з Хімії (стр. 11 из 33)

DVф.п.- зміна мольного об’єму води являє собою різницю між об’ємом одного моля води в рідкому стані та об’ємом одного моля води в кристалічному стані, а останні значення можуть бути розраховані як частка від ділення молярної маси води на густину води у відповідному стані, отже запишемоDVф.п. = MH2O/r (р) - MH2O/r(кр) = 18/0,9998 - 18/0,9168 =

= - 1,63 см3/моль = -1,63 ×10-6 м3/моль. На останнє значення потрібно звернути увагу, а саме на те, що воно має від’ємний знак. Це означає, що об’єм одного моля води в кристалічному стані більше від об’єму одного моля води в рідкому стані, і в цьому виявляється особливість (унікальність) води як речовини. Завдяки цьому кристали води (лід) плавають на її поверхні на відміну від кристалів інших речовин, які при їх утворенні тонуть у рідинах. Ця ж властивість води обумовлює від’ємний нахил лінії АО - залежності температури плавлення води від тиску на діаграмі стану води (див. рисунок до задачі N64). Для переважної більшості речовин ця лінія має додатній нахил (праворуч), а це означає, що на відміну від води температура плавлення більшості речовин з підвищенням тиску зменшується;Tф.п. - температура, при якій плавиться лід за умови задачі ( у рівняння Клапейрона-Клаузіуса завжди входить тільки абсолютна температура), отжеTф.п. = 273 K. Тепер є можливість розрахувати значення зміни тиску, потрібне для того, щоб вода плавилась при –1оС, підставивши всі дані в рівняння Клапейрона-Клаузіуса,

DP = (DHф.п.×DT)/( DVф.п. × Tф.п.) =(6020 ×(-1))/(273 × (-1,63×10-6)) =

= 1,35×107Н/м2 = 133 атм.

Другий вигляд рівняння Клапейрона-Клаузіуса використовується для розрахунків параметрів процесів при випаровуванні і сублімації. Такі фазові переходи дуже змінюють об’єм систем (див. задачу N42), а тому можна записати: DVф.п. = V(г) – V(кр) V(г). З рівняння Менделеєва-Клапейрона витікаєV(г)= (RT)/P(г) . Опустимо всі індекси (ф.п., г) для скорочення записів і підставимо всі величини в рівняння Клапейрона-Клаузіуса

dP/dT = DHф.п./( DVф.п. × Tф.п.) = DH/((RT)/P×T).

Перепишемо dP/P = (DH×dT)/(RT2)і , ураховуючи, що dP/P = dlnP, одержимо рівняння dlnP = (DH×dT)/(RT2).Ураховуючи широке використання цього рівняння для різних розрахунків параметрів процесів фазових переходів рідина-газ та кристали-газ, проведемо деякий його аналіз. Так, якщо припустити, що DH не залежить від температури і взяти невизначений інтеграл dlnP = DH/R dT/T2, тоодержимо рівнянняdlnP = - DH/R ×1/T + b. Це рівняння прямої, що не проходить через початок координат, а тому залежність логарифма тиску насиченої пари від температури є лінійною, що значно полегшує аналіз та розрахунки параметрів фазових переходів рідина - газ та кристали – газ. Далі, як і під час аналізу ізобари (див. задачу N56), легко показати, що теплота випаровування рідини (DH) може бути знайдена за тангенсом кута нахилу (a) прямої lnP = f(1/T) і розрахована за рівняннямDH = - tga×R. Якщо взяти визначений інтегралза двома значеннями температури Т1 та Т2і, відповідно, за двома значеннями тиску насиченої пари Р1та Р2LnP,T1LnP,T2dlnP = DH/R T1T2dT/T2, то одержимо рівняння Клапейрона-Клаузіуса в інтегральній формі, яке зв’язує тиск насиченої пари рідини при двох значеннях температури з теплотою фазового переходу (випаровування чи конденсації)

lnP,T2= lnP,T1+ DH/R (1/T1 – 1/T2). (відповідь - для різноманітних розрахунків параметрів процесів, що протікають під час фазових переходів в однокомпонентних системах)

Задача N 66. Розрахуватитиск насиченої пари води при температурі 150 оС. (відповідь – 5,36 атм)

Подібна задача.Розрахувати температуру кипіння води на висоті над рівнем моря 6 км, де тиск 354 ммрт.ст. У довіднику знайдемо значення теплоти випаровування води як різницю між значеннями стандартної теплоти утворення води рідкої та газоподібної.

DH випаровування води =DHоH2O(р) – DHоH2O(г) = -241,81 – (-285,83) = 44,02 кДж/моль. Урахуємо також, що при кипінні води при 100 оС (373 К) тиск насиченої пари води дорівнює атмосферному (1атм, 760 ммрт.ст. або 1,013 ×105 Па), підставимо всі ці дані в рівняння Клапейрона-Клаузіуса lnP,T2= lnP,T1+ DH/R (1/T1 – 1/T2)і одержимо рівняння з одним невідомим T1: ln760= ln354+ 44020/8,31 (1/T1 – 1/373), звідси знайдемо T1= 354 К = 81 оС. (відповідь – 81 оС)

Задача N 67. Розрахувати, яке максимальне число фаз може існувати в стані рівноваги в двокомпонентній системі при постійному тиску. (відповідь – 3)

Подібна задача.Розрахувати кількість параметрів, потрібних для повного опису двокомпонентної системипри Р const та Т const. Використаємо правило фаз Гіббса, як і під час розв’язання задач NN 60 – 62. Cmax = 2 – Фmin + 2 = 2 –1 + 2 = 3. Це означає, що графічне зображення властивостей двокомпонентної системи при Р const та Т const повинно бути у просторовій (об’ємній) системі координат типу Декартової, внаслідок того, що потрібно урахувати (крім температури та тиску) ще один параметр двокомпонентної системи, а саме, склад системи (концентрацію), який впливає на її властивості. Просторові зображення діаграм, де три змінні величини, часто використовують на практиці, але якщо є можливість зображати діаграми двокомпонентних систем не просторово, а в площині, то охоче цим користуються. Можливість графічно зображати властивості двокомпонентних систем у площині з’являється тоді, коли процеси протікають при Р = const, а переважна більшість технологічних процесів протікають саме при сталому тиску. У такому випадку Cmax = 2 – Фmin + 2 = 2 –1 + 1 = 2 і діаграму властивість системи – склад системи є можливість зображати в площині. (відповідь – може бути рівною 3 і 2 залежно від умов)

Задача N 68. Чи може бути розчин твердим? Наведіть приклад.(відповідь – може, приклад - нержавіюча сталь марки Х17Н13М2Т)

Подібна задача.Що називають розчином? Засоби графічного зображення складу розчинів.Розчином називають гомогенну суміш і з двох або більше компонентів, кожний елемент об’єму якої має однакові хімічні та термодинамічні властивості. Зверніть увагу на те, що у визначенні поняття “розчин” не має слова рідина, отже розчини можуть бути твердими (кристалічними), рідкими та газоподібними. Основною ознакою розчину є гомогенність системи (відсутність межі розділу), а також однаковість хімічних та термодинамічних властивостей будь-яких частин цієї системи. Дуже часто склад розчинів зображають у вигляді лінії, наприклад так:


A 10 20 30 40 50 60 70 80 90 B

Цифри, які стоять напроти поділки на лінії складу системи, можуть позначати масові відсотки, мольні відсотки та ін. Літера А відповідає складу системи з одного компонента – 100 % А. Поділка напроти цифри 20, наприклад, відповідає складу системи: 20 % компонента В та 80 % компонента А. На практиці склад (концентрацію) двокомпонентної системи достатньо характеризувати вмістом одного компонента. Так, наприклад, якщо в системі міститься 70 % компонента В, то зрозуміло, що вміст компонента А складає 30 %. Якщо до лінії складу системи поставити перпендикуляр і уздовж нього відкласти якісь властивості системи (тиск насиченої пари, температуру плавлення і т.ін.), то це й буде називатися діаграмою стану двокомпонентної системи.