4. Компьютеризированный сбор данных_________________________________ 2
4.1. Введение___________________________________________________________________ 2
4.2. Общая схема сбора данных__________________________________________________ 2
4.2.1. Диаграмма организации сбора данных_______________________________________ 2
4.2.2.Объекты мониторинга_______________________________________________________ 2
4.3. Датчики____________________________________________________________________ 3
4.3.1. Физические эффекты________________________________________________________ 3
4.3.2. Способы измерения (прямые и косвенные)_____________________________________ 4
4.3.3. Основные виды датчиков___________________________________________________ 5
а) температурные________________________________________________________________ 6
б) оптические___________________________________________________________________ 7
в) датчики влажности и газовые анализаторы__________________________________________ 9
г) магнитные датчики____________________________________________________________ 10
4.3.4. Классификация датчиков__________________________________________________ 10
4.4.Типы сигналов_____________________________________________________________ 12
4.4.1. Аналоговые сигналы______________________________________________________ 12
4.4.2. Импульсные сигналы______________________________________________________ 12
4.4.3. Цифровой сигнал_________________________________________________________ 13
а) квантование по уровню________________________________________________________ 13
б) квантование по времени________________________________________________________ 13
в) дискретные сигналы___________________________________________________________ 13
4.5. Преобразование сигналов___________________________________________________ 14
4.6. Организация компьютеризированного сбора данных__________________________ 14
4. Компьютеризированный сбор данных
История методов сбора и регистрации данных:
- регистрация человеком;
- механические регистраторы;
- электронные регистраторы;
- автоматизированные регистраторы данных (dataloggers);
- комп’ютеризированные системы сбора и анализа данных.
4.2.1. Диаграмма организации сбора данных
Рис 4.1. Диаграмма организации сбора данных
Объектом мониторинга может быть:
- физический объект;
- процесс.
Каждый объект определенным образом взаимодействует со внешней средой, например, излучая. Известно четыре фундаментальных поля, но с практической точки зрения удобно вводить дополнительные поля, нефундаментальные, которые являются либо ограниченной частью либо комбинацией фундаментальных излучений. Имеется множество различных излучений (нефундаментальных), которые необходимо на практике контролировать, например:
- тепловое излучение: электромагнитное излучение ИК-диапазона;
- видимый свет: электромагнитное излучение диапазона ≈380-750 нм;
- ультрафиолетовое излучение: электромагнитное излучение выше видимого диапазона;
- акустические излучения: механические колебания молекул, например, воздуха;
- различные виды радиационного излучения (α, β, γ – излучения).
Кроме параметров излучения на практике часто необходимо измерять различные физические и химические величины:
- давление;
- влажность: удельное содержание паров воды в воздухе;
- температура: кинетическая энергия движений молекул объекта;
- удельное содержание различных примесей (загрязнителей);
- перемещение, скорость, ускорение движения и геометрические размеры объекта;
- кислотность почвы;
- и т.д.
4.3.1. Физические эффекты
В основе действия любого датчика лежит физический эффект – преобразование значения/изменения одной физической величины в определенные значения/изменения другой физической величины.
В следующей таблице приведены известные физические эффекты:
Таблица 4.1. Физические эффекты
Эффект, явление, свойство | Физическая сущность преобразования |
Теплопроводность (тепловая энергия ® изменение физических свойств) | Переход теплоты внутри физического объекта из области с более высокой в область с более низкой температурой |
Тепловое излучение (тепловая энергия ® инфракрасные лучи) | Оптическое излучение при повышении температуры физического объекта |
Эффект Зеебека(температура ® электричество) | Возникновение ЭДС в цепи с биметаллическими соединениями при разной температуре спаев |
Пироэлектрический эффект (температура ® электричество) | Возникновение электрических зарядов на гранях некоторых кристаллов при повышении температуры |
Термоэлектронный эффект (тепловая энергия ® электроны) | Испускание электронов при нагревании металла в вакууме |
Электротермический эффект Пельтье (электричество ® тепловая энергия) | Поглощение или генерация тепловой энергии при электрическом токе в цепи с биметаллическими соединениями |
Электротермический эффект Томсона (температура и электричество ® тепловая энергия) | Генерация или поглощение тепловой энергии в электрической цепи из однородного материала при разных температурах участков цепи |
Фотогальванический эффект (свет ® электричество) | Появление свободных электронов и положительных дырок (возникновение ЭДС) в облучаемом светом p-n-переходе |
Эффект фотопроводимости (свет ® электрическое сопротивление) | Изменение электрического сопротивления полупроводника при его облучении светом |
Эффект Зеемана (свет, магнетизм ® спектр) | Расщепление спектральных линий при прохождении света в магнитном поле |
Эффект Рамана или комбинационное рассеяние света (свет ®свет) | Возникновение в веществе светового излучения, отличного по спектру от исходного монохроматического |
Эффект Поккельса (свет и электричество ® свет) | Расщепление светового луча на обыкновенный и необыкновенный при прохождении через пъезокристалл с приложенным к нему электрическим напряжением в перпендикулярном лучу направлении. |
Эффект Керра (свет и электричество ® свет) | Расщепление светового луча на обыкновенный и необыкновенный в изотропном веществе с приложенным к нему электрическим напряжением в перпендикулярном к лучу направлении. |
Эффект, Фарадея (свет и магнетизм ® свет) | Поворот плоскости поляризации линейно-поляризованного светового луча, проходящего через парамагнитное вещество |
Эффект Холла (магнетизм и электричество ® электричество) | Возникновение разности потенциалов на гранях твердого тела при пропускании через него электрического тока и приложении магнитного поля перпендикулярно направлению электрического тока. |
Магнитосопротивление (магнетизм и электричество ® электрическое сопротивление) | Увеличение электрического сопротивления твердого тела в магнитном поле. |
Магнитострикция (магнетизм ® деформация) | Деформация ферромагнитного тела, помещенного в магнитное поле. |
Пьезоэлектрический эффект (давление ® электричество) | Возникновение разности потенциалов на гранях сегнетоэлектрика, находящегося под давлением. |
Эффект Доплера (звук, свет ® частота) | Изменение частоты при взаимном перемещении объектов по сравнению с частотой, когда эти объекты неподвижны. |
4.3.2. Способы измерения (прямые и косвенные)
По способу измерения различают датчики:
- прямого
- косвенного
преобразования.
Для датчиков технической системы в связи с обработкой их сигналов на микро-ЭВМ обязательно требуется преобразование сигналов в электрические. Однако среди датчиков далеко не все построены на основе прямого преобразования того или иного явления в электрические сигналы. Во многих датчиках необходимы еще дополнительные преобразования. Датчики подобного типа называются косвенными в отличие от прямых, или непосредственных, где электрические сигналы формируются без промежуточных преобразований (рис. 4.2). Возьмем, например, оптический датчик. Это фотоэлектрический элемент на основе CdS. В зависимости от освещенности изменяется электрическое сопротивление между выводами элемента (рис. 4.3). Другим примером датчика прямого типа служит терморезистор, сопротивление которого изменяется в зависимости от температуры.
Рис. 4.2. Принцип работы датчиков с прямым (а) и косвенным (б) преобразователем
В датчиках косвенного типа явление, обусловленное непосредственным взаимодействием с внешней средой, преобразуется в другое явление (или ряд других), а последнее — в электрический сигнал. Примером такого типа может быть датчик массы на основе измерения деформации. В нем осуществляется следующая цепочка преобразований: масса ® механическое смещение ® изменение электрического сопротивления, в результате которых получается электрический сигнал. Еще одним примером датчика косвенного типа может служить датчик обледенения, выполненный на основе оптического элемента. Здесь осаждение инея вызывает изменение освещенности, которое, в свою очередь, преобразуется в выходной электрический сигнал.По принципу действия датчики укрупненно делятся на физические и химические. Первые построены на основе физических, вторые—на основе химических явлений. Но, строго говоря, имеются датчики, которые нельзя четко отнести к тому или иному типу. Практически подавляющее большинство современных датчиков работает на основе физических принципов. Для химических датчиков характерно наличие многих проблем, связанных преимущественно с надежностью, приспособленностью к массовому производству и стоимостью. В настоящее время многие из этих трудностей постепенно преодолеваются, и в будущем химические датчики найдут широкое применение, особенно как датчики запаха, вкуса или датчики медицинской электроники, вводимые в тело.