Образование Черных дыр. Гравитационный коллапс. Гравитационный радиус. 4
Термин "черная дыра" появился совсем недавно. Его ввел в обиход в 1969 г. американский ученый Джон Уилер как метафорическое выражение представления, возникшего по крайней мере 200 лет назад, когда существовали две теории света: в первой, которой придерживался Ньютон, считалось, что свет состоит из частиц; согласно же второй теории, свет - это волны. Сейчас мы знаем, что на самом деле обе они правильны. В силу принципа частично-волнового дуализма квантовой механики свет может рассматриваться и как частицы, и как волны. В теории, в которой свет - волны, было непонятно, как будет действовать на него гравитация. Если же свет - поток частиц, то можно считать, что гравитация действует на них так же, как на пушечные ядра, ракеты и планеты. Сначала ученые думали, что частицы света перемещаются с бесконечной скоростью и поэтому гравитация не может их замедлить, но когда Рёмер установил, что скорость света конечна, стало ясно, что влияние гравитации может оказаться существенным.
Чтобы понять, как возникает черная дыра, надо вспомнить о том, каков жизненный цикл звезды. Звезда образуется, когда большое количество газа (в основном водорода) начинает сжиматься силами собственного гравитационного притяжения. В процессе сжатия атомы газа все чаще и чаще сталкиваются друг с другом, двигаясь с всё большими и большими скоростями. В результате газ разогревается и, в конце концов, становится таким горячим, что атомы водорода, вместо того чтобы отскакивать, друг от друга, будут сливаться, образуя гелий. Тепло, выделяющееся в этой реакции, которая напоминает управляемый взрыв водородной бомбы, и вызывает свечение звезды. Из-за дополнительного тепла давление газа возрастает до тех пор, пока не уравновесит гравитационное притяжение, после чего газ перестает сжиматься. Это немного напоминает надутый резиновый шарик, в котором устанавливается равновесие между давлением воздуха внутри, заставляющим шарик раздуваться, и натяжением резины, под действием которого шарик сжимается. Подобно шарику, звезды будут долго оставаться в стабильном состоянии, в котором выделяющимся в ядерных реакциях теплом уравновешивается гравитационное притяжение. Но, в конце концов у звезды кончится водород и другие виды ядерного топлива. Как ни парадоксально, но чем больше начальный запас топлива у звезды, тем быстрее оно истощается, потому что для компенсации гравитационного притяжения звезде надо тем сильнее разогреться, чем больше ее масса. А чем горячее звезда, тем быстрее расходуется ее топливо. Запаса топлива на Солнце хватит примерно на пять тысяч миллионов лет, но более тяжелые звезды израсходуют свое топливо всего за сто миллионов лет, т. е. за время, гораздо меньше возраста Вселенной. Израсходовав топливо, звезда начинает охлаждаться и сжиматься, а вот что с ней происходит потом, стало понятно только в конце двадцатых годов нашего века.
Черные дыры - один из очень немногочисленных примеров в истории науки, когда теория развивалась во всех деталях как математическая модель, не имея никаких экспериментальных подтверждений своей справедливости. И это, конечно, было главным возражением противников черных дыр: как можно верить в реальность объектов, существование которых следует лишь из вычислений, основанных на такой сомнительной теории, как общая теория относительности. Но в 1963 г. Маартен Шмидт, астроном из Паламарской обсерватории в Калифорнии, измерил красное смещение тусклого, похожего на звезду объекта в направлении источника радиоволн ЗС273 (источник под номером 273 в третьем Кембриджском каталоге радиоисточников). Обнаруженное Шмидтом красное смещение оказалось слишком велико, чтобы его можно было объяснить действием гравитационного поля: если бы оно было гравитационного происхождения, то связанный с ним объект должен был иметь такую большую массу и располагаться так близко к нам, что его присутствие изменило бы орбиты всех планет Солнечной системы.
Образование Черных дыр. Гравитационный коллапс. Гравитационный радиус.
Ученые установили, что черные дыры должны возникать в результате очень сильного сжатия какой-либо массы, при котором поле тяготения возрастает настолько сильно, что не выпускает ни свет, ни какое-либо другое излучение, сигналы или тела.
Еще в 1798 г. П. Лаплас, исследуя распространение света в поле тяготения объекта, большая масса которого сосредоточена внутри малой области пространства, пришел к заключению, что в природе могут встречаться тела абсолютно черные для внешнего наблюдателя. Поле тяготения таких тел настолько велико, что не выпускает наружу лучей света. Для этого необходимо лишь, чтобы масса объекта была сосредоточена в области с радиусом, меньшим так называемого гравитационного радиуса тела.
Вывод Лапласа основывался на классической механике и теории тяготения Ньютона.
Следовательно, для возникновения черной дыры необходимо, чтобы масса сжалась до таких размеров, при которых вторая космическая скорость становится равной скорости света. Этот размер носит название гравитационного радиуса и зависит от массы тела. Величина его очень мала даже для масс небесных тел. Так, для Земли гравитационный радиус приблизительно равен 1см, для Солнца – 3 км.
Для того чтобы преодолеть тяготение и вырваться из черной дыры, потребовалась бы вторая космическая скорость, большая световой. Согласно теории относительности, никакое тело не может развивать скорость большую, чем скорость света. Вот почему из черной дыры ничто не может вылететь, не может поступать наружу никакая информация. После того как любые тела, любое вещество или излучение упадут под действием тяготения в черную дыру, наблюдатель никогда не узнает, что произошло с ними в дальнейшем. Вблизи черных дыр, как утверждают ученые, должны резко изменяться свойства пространства и времени.
Если черная дыра возникает в результате сжатия вращающегося тела, то вблизи ее границы все тела вовлекаются во вращательное движение вокруг нее.
Ученые считают, что черные дыры могут возникать в конце эволюции достаточно массивных звезд. После исчерпания запасов ядерного горючего звезда теряет устойчивость и под действием собственной гравитации начинает быстро сжиматься. Происходит так называемый гравитационный коллапс (такой процесс сжатия, при котором силы тяготения неудержимо возрастают).
А именно, к концу жизни звезды теряют массу в результате целого ряда процессов: звездного ветра, переноса массы в двойных системах, взрыва сверхновых и т.д.; однако известно, что существует много звезд с массой, в 10, 20 и даже в 50 раз превышающей солнечную. Маловероятно, что все эти звезды как-то избавятся от «излишней» массы, чтобы войти в указанные пределы (2-3М?). Согласно теории, если звезда или ее ядро с массой выше указанного предела начинает коллапсировать под действием собственной тяжести, то ничто уже не в состоянии остановить ее коллапс. Вещество звезды будет сжиматься беспредельно, в принципе, пока не сожмется в точку. В ходе сжатия сила тяжести на поверхности неуклонно возрастает – наконец, наступает момент, когда даже свет не может преодолеть гравитационный барьер. Звезда исчезает: образуется то, что мы называем ЧЕРНОЙ ДЫРОЙ.
До 1970 г. Стивен Хокинг в своих исследованиях по общей теории относительности сосредоточивался в основном на вопросе о том, существовала или нет сингулярная точка большого взрыва. Тогда еще не было точного определения, какие точки пространства-времени лежат внутри черной дыры, а какие - снаружи. Но многие уже обсуждали определение черной дыры как множества событий, из которого невозможно уйти на большое расстояние. Это определение стало сейчас общепринятым. Оно означает, что границу черной дыры, горизонт событий, образуют в пространстве-времени пути лучей света, которые не отклоняются к сингулярности, но и не могут выйти за пределы черной дыры, и обречены вечно балансировать на самом краю.
Пути лучей света на горизонте событий никогда не смогут сблизиться. Если бы это произошло, то лучи, в конце концов, пересеклись бы. Как если бы наткнуться на кого-то другого, тоже убегающего от полицейского, но в противоположном направлении,- тогда оба будут пойманы. Но если бы эти лучи света поглотила черная дыра, то они не могли бы лежать на границе черной дыры. Следовательно, на горизонте событий лучи света должны всегда двигаться параллельно друг другу, т. е. поодаль друг от друга. Иначе говоря, горизонт событий (граница черной дыры) подобен краю тени - тени грядущей гибели.
Если лучи света, образующие горизонт событий, т. е. границу черной дыры, никогда не могут сблизиться, то площадь горизонта событий может либо оставаться той же самой, либо увеличиваться со временем, но никогда не будет уменьшаться, потому что ее уменьшение означало бы, что, по крайней мере некоторые лучи света на границе черной дыры должны сближаться. На самом деле эта площадь будет всегда увеличиваться при падении в черную дыру вещества или излучения. Если же две черные дыры столкнутся и сольются в одну, то площадь горизонта событий либо будет больше суммы площадей горизонтов событий исходных черных дыр, либо будет равна этой сумме. То, что площадь горизонта событий не уменьшается, налагает важное ограничение на возможное поведение черных дыр, на самом деле это свойство площадей было уже известно. Но это исходило из несколько иного определения черной дыры. Оба определения дают одинаковые границы черной дыры и, следовательно, одинаковые площади при условии, что черная дыра находится в состоянии, не изменяющемся временем.
То, что площадь черной дыры не уменьшается, очень напоминает поведение одной физической величины - энтропии, которая является мерой беспорядка в системе. По своему повседневному опыту мы знаем, что беспорядок всегда увеличивается, если пустить его на самотек. (Попробуйте только прекратить дома всякий мелкий Ремонт, и вы убедитесь в этом воочию!) Беспорядок можно превратить в порядок (например, покрасив дом), но это потребует затраты усилий и энергии и, следовательно, уменьшит количество имеющейся "упорядоченной" энергии.