Смекни!
smekni.com

Эволюция Вселенной (стр. 2 из 3)

По последним расчётам доля невидимой материи составляет 96 процентов! Человек, живущий в стандартной двухкомнатной квартире, легко поймет астрономов, если представит себе, что все в его обители вдруг растворилось в воздухе, и лишь какой-то клочок, к примеру, любимый "обломовский" диван, он еще может разглядеть.

Современные космологи, подобно античным философам, разделяют мир на несколько разных стихий.

«Зевс лучезарный, и Аидоней,
и живящая Гера,
Также слезами текущая
в смертных потоках Нестида», где Зевсом он называет огонь, Герой - землю, Аидонеем - воздух и Нестидою - воду. Так видел мироздание греческий философ Эмпедокл (ок. 490 - 430 годов до новой эры). Эти стихии неизменны, не создаваемы и не разрушаемы, писал он в своем трактате "О природе" (цитируется по книге Диогена Лаэртского "О жизни, учениях и изречениях знаменитых философов"). Они не могут превращаться одна в другую, а могут лишь механически смешиваться друг с другом.

То, влекомое Дружеством,
сходится все воедино,
То ненавистной Враждой
вновь гонится врозь друг от друга.

Немецкие ученые Вольфганг Пристер и Джеймс Овердуин даже соотнесли учение Эмпедокла с выводами современных космологов.

* Земля, "живящая Гера" - это барионная материя (около 4 процентов) в самых разных ее проявлениях: от случайных атомов водорода, снующих в космическом пространстве, до сверхплотных нейтронных звезд.

* Воздух, "Аидоней" - это световое излучение (0,005 процента) и "горячая темная материя" (0,3 процента), состоящая в основном или исключительно из нейтрино.

* Вода, или "текущая в смертных потоках Нестида" - это и есть пресловутая темная материя (около 30 процентов), давно занимающая умы ученых. Теперь ее называют "холодной темной материей". Очевидно, она состоит из не открытых пока элементарных частиц. Им уже подобраны звучные названия: "аксионы", "нейтралино", WIMPs (Weakly Interacting Massive Particles, "слабо взаимодействующие тяжелые частицы"). "Как океан объемлет шар земной", так видимый мир кругом объят темной материей.

* Большая же часть космоса "охвачена Огнем". Здесь царит "Зевс лучезарный". Это - мир "темной энергии" (почти 66 процентов), открытой недавно косвенным путем. Общая масса этого вида материи должна быть невероятно велика, но поскольку темная энергия разлита по всему мирозданию, ее плотность, как показывают расчеты, не превышает четырех электрон-вольт на кубический миллиметр. Для сравнения: масса покоя одного электрона равна 511 тысяч электрон-вольт.

Еще в 1917 году, описывая Вселенную, Альберт Эйнштейн ввел в формулу "космологическую константу" - своего рода "антигравитацию". Она уравновешивала действие гравитационных сил, но ее существование удалось доказать лишь в 1998 году.Космологическая константа и получила теперь наименование "темной энергии". Это определение дал ей в 1998 году Майкл Тернер, астрофизик из Чикагского университета. Вселенная в основном наполнена ей. Планеты, звезды, галактики - это редкие корабли и случайные пловцы, затерянные посреди моря "темной энергии". Поправляя Эмпедокла, скажем: в мире царит Зевс сумеречный.

Открыли эту самую великую и неприметную стихию сразу двумя путями: наблюдая за отдаленными вспышками сверхновых звезд и исследуя космическое фоновое излучение.

Светимость сверхновых звезд определенного типа всегда одинакова. Лишь по мере удаления от них видимая яркость их ослабевает. Однако далекие сверхновые звезды светят слабее, чем требует теория. Эти наблюдения позволили сделать вывод, что Вселенная расширяется все быстрее, хотя у критиков остались возражения.[2]

В ту отдаленную эпоху Вселенная расширялась медленнее, чем теперь. Силы гравитации сдерживали бег видимой материи. "Судя по поведению сверхновых, наша Вселенная напоминает обычного автомобилиста: она то тормозит, увидев впереди красный свет, то залихватски мчится, заметив зеленый", - поясняет Рисс. Роль светофора поочередно выполняли гравитация и антигравитация. Около девяти миллиардов лет назад последняя - то бишь темная энергия - победила. С тех пор Вселенная расширяется все быстрее. Впрочем, это исследование не позволило точно определить содержание темной энергии во Вселенной, хотя и стало ясно, что она преобладает над остальными формами материи.

Параллельно этой работе шли исследования фонового космического излучения. Телескопы "Бумеранг" и "Максима", установленные на аэростатах доказали, что Вселенная имеет плоскую форму. Телескоп DASI ("DegreeAngularScaleInterferometer"), размещенный в Антарктиде сотрудниками Чикагского университета и Калифорнийского технологического института, не только подтвердил плоскую форму Вселенной, но и позволил в 2001 году оценить содержание в ней темной энергии.[3]

Итак, две трети мироздания состоят сейчас из темной энергии. Вселенная словно охвачена огнем. Он медленно разгорался, но теперь пылает вовсю. В его темном пламени крупицами пепла разлетаются звезды и галактики. Они летят все дальше, все дальше, отодвигая границы космоса.

3 Эволюция Вселенной

3.1 Стандартная модель эволюции Вселенной.

Вселенная постоянно расширяется. Тот момент, с которого Вселенная начала расширятся, принято считать ее началом. Тогда началась первая и полная драматизма эра в истории вселенной, ее называют “большим взрывом”.

Под расширением Вселенной подразумевается такой процесс, когда то же самое количество элементарных частиц и фотонов занимают постоянно возрастающий объём. Средняя плотность Вселенной в результате расширения постепенно понижается. Из этого следует, что в прошлом Плотность Вселенной была больше, чем в настоящее время. Можно предположить, что в глубокой древности (примерно десять миллиардов лет назад) плотность Вселенной была очень большой. Кроме того высокой должна была быть и температура, настолько высокой, что плотность излучения превышала плотность вещества. Иначе говоря, энергия всех фотонов содержащихся в 1 куб. см была больше суммы общей энергии частиц, содержащихся в 1 куб. см. На самом раннем этапе, в первые мгновения “большого взрыва” вся материя была сильно раскаленной и густой смесью частиц, античастиц и высокоэнергичных γ-фотонов. Частицы при столкновении с соответствующими античастицами аннигилировали, но возникающие γ-фотоны моментально материализовались в частицы и античастицы.

На начальном этапе расширения Вселенной из фотонов рождались частицы и античастицы. Этот процесс постоянно ослабевал, что привело к вымиранию частиц и античастиц. Согласно тому, как материализация в результате понижающейсятемпературы раскаленного вещества приостановилась. Эволюцию Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную.

а) Адронная эра. При очень высоких температурах и плотности в самом начале существования Вселенной материя состояла из элементарных частиц. Вещество на самом раннем этапе состояло, прежде всего, из адронов, и поэтому ранняя эра эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны.

К моменту, когда возраст Вселенной достиг одной десятитысячной секунды (10-4с.), температура ее понизилась до 1012K, а энергия частиц и фотонов представляла лишь 100 Мэв. Ее не хватало уже для возникновения самых легких адронов - пионов. Пионы, существовавшие ранее, распадались, а новые не могли возникнуть. Это означает, что к тому моменту, когда возраст Вселенной достиг 10-4с., в ней исчезли все мезоны. На этом и кончается адронная эра, потому что пионы являются не только самыми легкими мезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.

б) Лептонная эра. Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв в, веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.

Лептонная эра начинается с распада последних адронов - пионов - в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 1010K, когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем “реликтовыми”. Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.

в) Фотонная эра или эра излучения. Вселенной понизилась до 1010K, а энергия γ-фотонов достигла 1 Мэв, произошла только аннигиляция электронов и позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества. Со времени адронной и лептонной эры Вселенная была заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по энергии.

После “большого взрыва” наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения “большого взрыва” (приблизительно 300 000 лет) до наших дней. По сравнению с периодом “большим взрыва” её развитие представляется как будто слишком медленным. Это происходит по причине низкой плотности и температуры. Таким образом, эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем красоту и блеск Вселенной. Взрыв суперновой или гигантский взрыв галактики - ничтожные явления в сравнении с большим взрывом.