От главной звезды В9 к ее спутнику F непрерывно извергаются потоки газового вещества. Они огибают спутник и возвращаются к главной звезде, образуя, таким образом, непрерывную циркуляцию газа. Но инертность газа и вращение спутника вокруг главной звезды приводят к тому, что часть газа, находящегося за спутником, на стороне, противоположной направлению на главную звезду, улетучивается во внешнее пространство. При этом газ, удаляясь от звезды, образует огромное газовое кольцо. Нечто сходное можно иногда увидеть при фейерверках, когда особые вертушки выбрасывают в воздух светящиеся спирали.
Кольцеобразный газовый шлейф b Лиры — образование динамическое. Оно непрерывно рассеивается в пространстве, и его кажущаяся стабильность объясняется непрерывным пополнением газового вещества идущего от вращающейся звездной пары.
Доступная нашему наблюдению газовая спираль имеет почти такой же размер, как наша планетная система. Луч зрения лежит как раз в ее плоскости, и только благодаря этому случайному обстоятельству удалось обнаружить ее существование. Кольцо вуалирует спектр главной звезды, и именно этим вызваны странные особенности спектра b Лиры. Если бы систему b Лиры мы наблюдали «сверху» или «снизу», она показалась бы нам самой обычной звездой.
На зимнем небе в созвездии Близнецов выделяются две звезды, сходные по яркости друг с другом. Верхняя из них называется Кастором, а нижняя - Поллуксрм. Оба эти имени мифологического происхождения. Согласно легендам древних греков, так звали двух близнецов, рожденных красавицей Ледой от всемогущего Зевса.
Еще в 1718 г. английский астроном Д. Брадлей (1693-1762) открыл, что Кастор—двойная звезда, состоящая из двух горячих и крупных солнц. Вскоре удалось заметить, что обе звезды весьма медленно обращаются вокруг общего центра. К сожалению, до сих пор период обращения в этой системе не может считаться уверенно определенным. Наиболее надежным его значением считается 341 год.
Трудности, с которыми приходится сталкиваться астрономам, станут более понятными, если осознать, что видимое движение в системах двойных звезд не есть движение истинное. Дело в том, что плоскость, в которой спутник совершает обращение вокруг главной звезды, обычно наклонена под некоторым углом к лучу зрения. Поэтому астрономы видят не истинную орбиту звезды и не истинное ее движение, а только проекцию того и другого на плоскость, перпендикулярную к лучу зрения.
Все это сильно затрудняет исследования. Отсюда проистекает и та неточность результатов, с которыми мы сейчас столкнулись.
Кастор А и Кастор В (как обозначают астрономы компоненты интересующей нас пары) отстоят друг от друга примерно в 76 раз дальше, чем Земля от Солнца. Иначе говоря, обе звезды разделяет расстояние, почти вдвое превышающее среднее расстояние Плутона от Солнца.
Около полутора веков назад поблизости от Кастора была замечена слабосветящаяся звездочка 9-й звездной величины, сопровождающая Кастор А и Кастор В в их полете вокруг центра Галактики. Если звезды видны на небе вблизи друг от друга и движутся в одном направлении и с одной скоростью — это верный признак того, что звезды физически связаны между собой. Поэтому уже с начала века Кастор считается не двойной, а тройной звездой.
Кастор С — третий компонент в рассматриваемой системе солнц — полная противоположность Кастору А и Кастору В. Это карликовая красноватая звездочка. Расстояние между ней и главными звездами системы во всяком случае не меньше чем 960 а. е. Заметим, что измеренное расстояние есть проекция на небосвод истинного расстояния.
При значительной удаленности от главных звезд Кастор С обращается вокруг них с периодом в десятки тысяч лет! Неудивительно, что за полтора века наблюдения Кастор С не сдвинулся со своего места на сколько-нибудь ощутимую величину.
Любопытнее всего, что каждая из трех звезд, с которыми мы сейчас познакомились, в свою очередь, представляет собой настолько тесную пару звезд, что «разделить» их удается только методами спектрального анализа.
Кастор А и Кастор В распадаются на две пары близнецов, расстояния между которыми составляют около 10000000 км! Это в пять раз меньше, чем расстояние от Меркурия до Солнца. Весьма возможно, что все четыре звезды под действием взаимного тяготения приобрели дынеобразную форму трехосных эллипсоидов,
Что касается Кастора С, то и эта звезда состоит из двух близнецов-карликов, удаленных друг от друга на 2700000 км, что лишь вдвое превышает диаметр Солнца.
По случайному стечению обстоятельств плоскость, в которой обращаются оба двойника Кастор С, проходит через луч зрения земного наблюдателя. Благодаря этому одна звезда периодически закрывает часть другой, из-за чего общий поток излучения от системы уменьшается. Применяя астрономическую терминологию, можно сказать, что Кастор С является затменно-переменной звездой.
Перед нами раскрылась удивительная картина — система из шести звезд, связанных между собой узами взаимного тяготения: две пары горячих огромных звезд и пара холодных красноватых карликов, непрерывно участвующих, в сложном движении. Двойники Кастор А совершают оборот вокруг общего центра масс всего за 9 дней. Двойники Кастор В, несколько более близкие друг к другу, имеют еще меньший период обращения—только .3 дня. И уж совсем головокружительным кажется вращение карликов, которые ухитряются обернуться вокруг центра масс всего за 19 ч! От 19 ч до десятков тысяч лет — таково разнообразие периодов обращения в этой удивительной системе звезд.
Долгое время шестикратная система Кастор считалась уникальной. Однако в 1964 г. обнаружили, что хорошо известная двойная звезда Мицар (средняя в ручке ковша Большой Медведицы) также, по-видимому, должна быть отнесена к шестикратным системам. Действительно, уже невооруженный глаз легко обнаруживает рядом с Мицаром звездочку пятой звездной величины, названную Алькором. Обе звезды имеют общее движение в пространстве и потому, по-видимому, образуют физическую пару звезд. В небольшой телескоп Мицар распадается на два компонента — Мицар А и Мицар В. По наблюдениям спектра Мицара А давно установлено, что эта звезда, в свою очередь, состоит из двух компонентов с периодом обращения вокруг общего центра тяжести, равным двадцати с половиной земным суткам. И вот, наконец, в 1964 г. выяснилось, что Мицар В, казавшийся до тех пор одиночной звездой, на самом деле состоит из трех звезд. Две из них близки друг к другу и обращаются вокруг общего центра масс за 182 сут. Третий же, далеко отстоящий от них компонент обладает значительно большим периодом обращения, равным 1 350 сут.
В настоящее время известны десятки тысяч двойных звезд, так что содружества звезд — явление очень частое. Возможно, более половины всех звезд являются двойными.
Первое знакомство всегда бывает внешним. Поэтому мы прежде всего обратим внимание на фотопортрет типичного шарового звездного скопления. Каждое шаровое скопление—это своеобразный исполинский шар из звезд, или, применяя более специальную терминологию, типичная сферическая звездная система. Бросается в глаза в общем равномерная по всем направлениям концентрация звезд к центру скопления. В сердцевине шаровых скоплений звезд так много и они так плотно расположены в пространстве, что на фотографиях видно лишь сплошное сияние.
Известно более 130 шаровых звездных скоплений, хотя общее их число в нашей Галактике должно быть раз в десять большим. Поперечники их весьма различны. У самых маленьких они близки к 5—10 св. годам, у наибольших измеряются 500—600 св. лет. Различна и масса скоплений - от нескольких десятков тысяч до сотен тысяч солнечных масс. Так как различия в массе у отдельных звезд невелики, можно считать, что шаровые звездные скопления содержат десятки, сотни тысяч, а иногда и миллионы звезд!На фотоснимках шаровых скоплений мы видим не действительное распределение звезд в скоплении, а лишь проекций этого распределения на плоскость. Выведены формулы, позволяющие перейти от видимой картины к истинной. Оказалось, что пространственное распределение звезд в шаровых звездных скоплениях весьма сложно. В самых общих чертах шаровые звездные скопления состоят из плотного центрального ядра и короны окружающей его, в пределах которой плотность меняется сравнительно мало.
Подмечено, что у разных скоплений увеличение концентрации к центру различно—у одних оно мало, у других выражено очень резко. И еще один любопытный факт — некоторые «шары из звезд» заметно сплюснуты. Вызвано ли это их вращением или другими причинами, пока неизвестно.
Для Плеяд, типичного рассеянного, с неправильными очертаниями звездного скопления, характерно обилие очень горячих гигантских звезд. В шаровых скоплениях, наоборот, такие звезды редки или вовсе отсутствуют. Известно около 1200 рассеянных звездных скоплений, .Каждое из них включает в себя от нескольких десятков до нескольких тысяч звезд, в основном принадлежащий к главной последовательности.
Горячие белые и голубые звезды-гиганты — образования весьма молодые, существующие не более нескольких десятков миллионов лет (для звезд этот срок все равно что для человека несколько дней). Раз их нет в шаровых звездных скоплениях, значит, сами эти скопления по-видимому, имеют весьма почтенный возраст.
О том же свидетельствует и другой факт—в шаровых звездных скоплениях, за очень редким исключением, нет газовых или пылевых туманностей. Межзвездное пространство там почти идеально прозрачно. Так могло получиться, если, например, шаровые звездные скопления совершили много оборотов вокруг ядра Галактики и каждый раз проходя через богатую глазом и пылью серединную плоскость нашей звездной системы, они оставляли там свои газы и пыль. Этот грандиозный очистительный «фильтр" действовал, безотказно и, возможно, благодари, ему шары из звезд так очищены от межзвездного «мусора».