Смекни!
smekni.com

Уникальный астрономический объект SS 433 (стр. 6 из 12)

Рассмотрим, как меняется орбита системы в процессе обмена веществом. Во многих случаях обмен масс в двойной системе с большой точностью можно считать консервативным, то есть все вещество, истекающее с одной звезды, полностью перехватывается соседней и орбитальный момент системы не изменяется. Из условия сохранения момента следует, что при перетекании вещества с более массивной компоненты на менее массивную расстояние между звездами должно уменьшаться. В противном случае – когда вещество истекает с менее массивной компоненты – расстояние между ними должно увеличиваться.

По ряду причин вещество может не полностью перехватываться соседней компонентой и часть его покидает систему, унося угловой момент. Тогда процесс перетекания неконсервативен, угловой момент не сохраняется, В этом случае расчет эволюции усложняется. По общей теории относительности (ОТО) орбитальный момент импульса двойной системы должен всегда убывать, вне зависимости от того, происходит в системе перетекание вещества или нет.

Глава 3. Уникальный объект SS 433
3.1. Загадка SS 433

Об этом удивительном небесном объекте написано уже немало. Речь идет об источнике в созвездии Орла, занесенном в каталог ярких эмиссионных звезд Ц. Стефенсона и Н. Сандулека под номером 433. SS 433 – уникальная по своим свойствам тесная двойная система: несмотря на тщательные поиски, других подобных источников пока в Галактике не обнаружено. Источник удивителен по богатству ярких феноменов, физика которых во многом до настоящего времени окончательно не выяснена. [9]


Внимание к себе он привлек после того, как английскими учеными Д. Кларком и П. Мардиным была получена первая спектрограмма с высоким разрешением в оптическом диапазоне. В 1977 г. Б. Стефенсон и Н. Сандулек опубликовали список звезд, замечательных тем, что в их спектрах имелись яркие эмиссионные линии. Дальнейшее изучение показало, что одна из этих звезд невидимая простым глазом звезда под номером SS 433 в районе созвездия Орла вблизи центральной плоскости Галактики, выделяется необычайным обилием эмиссионных линий. В ее спектре имеются яркие эмиссионные линии водорода, гелия, некоторых других элементов. Но около каждой из этих линий находится по две дополнительные эмиссионные линии несколько меньшей интенсивности – одна слева, а другая справа.

Это особенно четко видно в линиях атома водорода (серии Бальмера) – самых сильных из всех эмиссионных линий SS 433 – см. рис. 11. На рисунке дополнительные линии, лежащие слева от основной, т е. в сторону голубого края спектра, отмечены буквой В от слова blue – голубой; будем называть их голубыми линиями-спутниками. Дополнительные линии, лежащие справа от основной, т. е. в сторону красного края спектра, отмечены буквой Rот слова red – красный, будем называть их красными линиями-спутниками. Можно заметить, что линии-спутники расположены относительно основных в строгом порядке. Именно на шкале длин волн каждая голубая линия-спутник отстоит от основной на отрезок, который пропорционален длине волны основной линии:

(3.1)

Здесь

- разность длин волн голубой линии-спутника и основной линии; индекс «i» пробегает значения
, которыми различаются линии в спектральной серии, так что приведенное соотношение содержит столько уравнений, сколько имеется основных линий (на рис. 11. показаны три основных линии); коэффициент пропорциональности
одинаков и отрицателен по знаку для всех голубых линий-спутников.

То же и с красными линиями-спутниками:

(3.2)

Здесь столько уравнений, сколько значений пробегает индекс «i»; значение

одинаково для всех красных линий-спутников и положительно по знаку; по абсолютной величине
и
не совпадают между собой:
>
.

Фактически в спектре SS 433 имеются три системы спектральных линий: одна система на своем стандартном месте на шкале длин волн – это система основных линий – и две другие системы линий, смещенные относительно стандартного положения в голубую и красную стороны. Это смещение представляет собой не просто сдвиг линий с сохранением их относительных положений (т. е. расстояний между ними на шкале длин волн), а сдвиг с изменением относительных положений, так как, сдвиг каждой дополнительной линии от основной тем больше, чем больше длина волны основной линии.

Смещения спектральных линий сами по себе не новость в астрономии. Более полувека назад пулковский астроном А. А. Белопольский наблюдал смещение линий в спектрах звезд и по величине и знаку смещения определял лучевые скорости звезд, т. е. скорости вдоль луча зрения. Смещение линий от их стандартного положения служат для астрономов безошибочным указанием на то, что источник излучения движется относительно наблюдателя. Изменение длин волн и частот излучаемого света, вызываемое относительным движением источника и приемника света, носит название эффекта Доплера. [22]

Эффект Доплера

Эффект Доплера возможен при любом волновом или периодическом движении. Он знаком всем по примеру с поездом, когда гудок поезда кажется более высоким по тону при приближении поезда и низким – при удалении. Воспринимаемая ухом частота звуковых волн больше при приближении и меньше при удалении источника звука. То же и с электромагнитными волнами. Хотя полной аналогии и нет. Дело в том, что звуковые волны распространяются только в среде, а электромагнитные волны могут распространяться и в пустоте. Поэтому в акустике различают движения источника и приемника звука относительно среды, а для электромагнитной волны существенно лишь относительное движение источника и приемника, т. е. только изменение расстояния между ними. Кроме того, электромагнитные волны распространяются в пустоте с максимально возможной скоростью, со скоростью света с, тогда как скорость звука определяется свойствами среды, по которой он распространяется. Покажем, как можно получить формулы, описывающие эффект Доплера для света. Допустим, имеется источник, который посылает нам короткие импульсы, вспышки света. Эти импульсы регистрируются приемником света, и мы


будем фиксировать моменты испускания и прихода импульсов.

Пусть один импульс испущен в момент

и достиг нас в момент
, а следующий за ним испущен в момент
и принят в момент
. В первом случае свет распространялся в течение времени
и прошел путь
; во втором случае время распространения
и путь
. Если источник, покоится относительно нас и расстояние до него не меняется, то, очевидно, оба пути света равны. Если же источник движется, то пути различны: приближение источника сокращает путь света, а удаление увеличивает.

Рассмотрим сначала случай приближающегося источника (рис. 12). Если он движется по направлению к нам со скоростью

, то вторая вспышка будет испущена в точке, которая на отрезок пути
ближе:

-
=
(3.3)

Перепишем это уравнение в несколько ином виде:

(3.4)

Представим себе теперь, что мы следим не за отдельными вспышками, а за непрерывно испускаемыми волнами. Тогда мы можем выбрать моменты испускания

и
так, чтобы промежуток времени между ними равнялся периоду испускаемой волны
:
=
. А период принимаемой волны T выразится через t1 и t2:
=T