Смекни!
smekni.com

Солнечный ветер, особенности межпланетного пространства (Солнце – Планеты) (стр. 4 из 7)

-12-

случае солнечный ветер чувствует кометную атмосферу на расстоянии, которое на 5-6 порядков величины и более может превосходить размер самого ядра кометы.

Надо заметить, что структуру течения, возникающего при обтекании комет солнечным ветром, практически невозможно исследовать наземными приборами. Это можно было сделать только при помощи установленных на космических аппаратах приборов, проводивших прямые измерения вблизи комет. Именно поэтому в 2.3.5 проводится сравнение некоторых результатов экспериментальных исследований обтекания кометы Галлея солнечным ветром, полученных при помощи космических аппаратов в марте 1986 года, с предсказаниями теории.

2.3.1. Поверхность кометного ядра как источник газового потока

О взаимодействии солнечного ветра с кометами можно говорить только тогда, когда комета имеет довольно протяженную и плотную атмосферу. В этом случае атмосфера должна непрерывно расширяться в окружающий межпланетный газ очень низкого давления, поскольку маленькое кометное ядро имеет пренебрежимо малую гравитацию и не может удерживать свою атмосферу в равновесии. Основной причиной возникновения атмосферы является испарение твердого вещества, из которого состоит ядро, вследствие его прогревания солнечным излучением. При этом испарение происходит прямо из твердого состояния без перехода в жидкую фазу (возгонка).

Поскольку кометное ядро почти невидимо при помощи астрономических приборов, то важным представляется построение его теоретических моделей. В настоящее время считается, что ядро - это конгломерат каменистых частиц и замороженной летучей компоненты (это могут быть молекулы CO2 , H2O, CH4 и т.п.). В ядре ледяные слои из замороженных газов чередуются с пылевыми слоями. По мере прогревания солнечным излучением газы (типа испаряющегося "сухого" льда) истекают наружу (в окружающий комету вакуум), увлекая за собой облака пыли. В результате ядро кометы является источником газопылевого потока, вытекающего навстречу солнечному ветру. Рассмотрим сначала количественную модель истечения потока вещества с поверхности кометы.

Если считать, что процесс возгонки происходит равновесно, то, как известно из курса физики, справедливо уравнение Клапейрона-Клаузиуса

(1)

где ns - концентрация молекул испаряющегося вещества, Ts - их температура, k - постоянная Больцмана, NA - число Авогадро, L - скрытая теплота испарения, которая при написании уравнения (1) считается постоянной величиной, а величина n0kT0 соответствует давлению пара при Ts = T0 (в некоторых теоретических моделях для ядер из замерзшего льда H2O использовались значения n0 = 1,94

1019 см-3, T0 = 373 K, L = 5
1011 эрг/моль). Кроме того, на поверхности кометного ядра должно выполняться уравнение баланса энергии, которое при ряде упрощающих предположений, и в частности в предположениях сферически-симметричного ядра и равномерном его нагреве (равномерный нагрев поверхности возможен при достаточно быстром вращении кометного ядра), будет иметь вид

(2)

-13-

В уравнении (2)

- болометрическое альбедо, характеризующее способность поверхности отражать падающее на нее излучение,
- расстояние от кометы до Солнца (в а.е.),
- солнечная постоянная,
- излучательная способность поверхности ядра в инфракрасном диапазоне частот,
- постоянная Стефана-Больцмана,
- скорость истечения молекул с поверхности ядра в результате процесса возгонки. Физический смысл уравнения (2) заключается в балансе поглощаемой кометным ядром энергии падающего солнечного излучения (левая часть) и энергии, отдаваемой ядром (первый член справа соответствует энергии электромагнитного излучения с поверхности нагретого ядра, а второй член - энергии покидающих ядро молекул). Система уравнений (1) и (2) не является замкнутой для определения трех неизвестных величин
,
,
. Поэтому в литературе часто используется дополнительное предположение, что скорость истечения молекул равна скорости звука для ядер комет с малым содержанием пыли, то есть

(3)

где

и
- удельные теплоемкости при постоянном давлении и объеме соответственно, а
- масса испарившейся молекулы. Для комет с большим содержанием пыли часто принимается соотношение типа соотношения (3), но с коэффициентом Ms < 1, который характеризует отношение скорости газа к скорости звука - так называемое число Маха.

Результат решения системы уравнений (1)-(3) при

= 0,63,
= 0,37 и
= 5/4 представлен на рис. 2 , где
,
и
даны как функции расстояния от Солнца d. Видно, что с приближением к Солнцу увеличивается как скорость истечения, так и концентрация молекул кометного вещества, то есть увеличивается количество молекул, покидающих поверхность кометного ядра в единицу времени (как увидим в дальнейшем, этот параметр очень важен для проблемы взаимодействия солнечного ветра с кометной атмосферой).

Рис. 2. Концентрация ns молекул испаряющегося с поверхности кометы вещества, их скорость Vs и температура Ts как функции расстояния d от Солнца

-14-

2.3.2. Физические процессы в потоке газа, истекающего с поверхности кометного ядра

Изучение спектров излучения кометной комы не позволяет с достаточной степенью точности определить распределение параметров газового потока от кометы как функции расстояния от кометного ядра (скорости, концентрации продуктов распада молекул кометного происхождения, их температуры и т.п.). Даже исследование кометы Галлея в марте 1986 года при помощи космических аппаратов не очень сильно продвинуло понимание характера истечения вещества с поверхности комет, поскольку не удалось приблизиться к ядру кометы на такое близкое расстояние (порядка сотен километров). Знание же этих параметров необходимо для определения характера взаимодействия кометного газа с солнечным ветром. Поэтому построение газодинамических моделей такого течения является важной задачей.

Подавляющее большинство моделей исходит из предположения о сферически-симметричном истечении кометного газа в вакуум. При этом решение уравнений газовой динамики допускает либо всюду сверхзвуковое течение, либо всюду дозвуковое, если наличие пыли не является существенным. В присутствии же пылевой компоненты, как показал американский аэродинамик Пробстейн, возможен переход от дозвукового истечения с поверхности ядра к сверхзвуковому течению вдали от нее. Поэтому почти во всех моделях последнего времени скорость

на поверхности ядра задается сверхзвуковой в соответствии с уравнением (3). Этому предположению способствовало еще и то, что для кометы Галлея расход пыли достаточно мал, чтобы повлиять на газодинамическое течение. Для расчета течения газа от источника, которым является кометное ядро, требуется знание прежде всего химического состава истекающего газа и происходящих в потоке химических реакций, главными из которых являются процессы фотодиссоциации и фотоионизации кометных молекул солнечной радиацией. Если, например, кометное ядро представляет собой в основном лед H2O, то в результате химических реакций в потоке образуется одиннадцать главных компонент: H2O, OH, H, O, H2 , O2 , H3O+, H2O+, OH+, O+ и H+. Учет 27 возможных реакций при решении газодинамических дифференциальных уравнений для условий нахождения кометы на 1 а.е. от Солнца (см. рис. 2) приводит к распределению концентраций всех компонент, изображенному на рис. 3a, б (рисунки взяты из [2]).