лескоп был впервые направлен на Крабовидную туманность. Для каж-
дой звезды измерения проводились в течение 5000 периодов пульса-
ра, причем за каждый период световой сигнал распределялся после-
довательно между несколькими счетчиками. Но ни одна звезда в
исследованной области не давала накопления импульса на счетчи-
ках, и 12 января Тейлор вернулся в Тусон. Помогать Коку и Диснею
остался Роберт Мак-Каллистер, обслуживающий электронную аппара-
туру. 12 января погода начала портиться, а результатов все не
было. Еще две ночи, отведенные на это исследование, пропали
из-за плохой погоды, и все предприятие, казалось, было обречено
на неудачу.
Как часто все решает случай ! Уильям Тиффт - наблюдатель,
чье дежурство начиналось с 15 января, уступил незадачливым но-
вичкам ночи 15 и 16 января, чтобы они смогли вновь попытать
счастья. Здесь предоставим слово самому Диснею.
"Пятнадцатого днем было облачно, но к вечеру небо проясни-
лось. Мы начали ровно в 20 часов. Тейлор был еще в Тусоне; Кок и
я сменяли друг друга у телескопа, а Мак-Каллистер работал с ап-
паратурой Тейлора. Для начала мы сделали замер от темного неба,
в стороне от звезд. Для следующего измерения мы выбрали звезду,
которую Вальтер Бааде обозначил как центральную звезду Крабовид-
ной туманности. Всего тридцать секунд потребовалось для того,
чтобы прибор показал нарастающее накопление импульса на счетчи-
ках. Заметен был и слабый вторичный импульс, отстоящий от глав-
ного примерно на половину периода; он был значительно шире и не
такой высокий. В то время как Мак-Каллистер продолжал спокойно
обслуживать аппаратуру, мы с Коком поминутно переходили от исте-
рического возбуждения к глубочайшей депрессии. Действительно ли
это пульсар или просто какие-то ложные аппаратурные эффекты?
Ведь частота пульсара была в точности равна половине промышлен-
ной частоты переменного тока в США. Но при повторном измерении
импульс вновь появился во всей своей красе, и настроение под ку-
полом обсерватории поднялось.
В 20.30, через полчаса после начала наблюдений, позвонил
Тейлору. Он отнесся к моему сообщению скептически и предложил
изменить кое-что в аппаратуре, чтобы устранить возможные ошибки.
Лишь на следующую ночь, наблюдая своими глазами за накоплением
импульса, он перестал сомневаться.
В 1.22 появились облака. Наблюдения были окончены. У трех
наблюдателей в обсерватории не было ни малейшего сомнения в том,
что им посчастливилось открыть первый оптический пульсар".
Теперь и другие астрономы стали искать подтверждения откры-
тия.
После открытия пульсара в Крабовидной туманности стало ясно,
что пульсары каким-то образом связаны со взрывами сверхновых.
По-видимому, сигналы пульсары идут от того объекта, который ос-
тается на месте взрыва сверхновой. Это предположение подтвержда-
ется и другим пульсаром, излучение которого исходит из области,
где наличие газовых масс указывает на происшедший ранее взрыв
сверхновой. Этот взрыв, по всей вероятности, произошел очень
давно, задолго до аналогичного события в Крабовидной туманности.
В созвездии Паруса разлетающиеся газовые массы выглядят уже не
как компактное пятно, а как отдельные "нити", имеющие большую
протяженность. Период этого пульсара на 0,09 секунды больше пе-
риода пульсара в Крабовидной туманности. Это третий из самых
быстрых известных пульсаров.( После открытия миллисекундных ра-
диопульсаров его место 5-6). С самого начала велся поиск этого
объекта в видимой области спектра. Но успеха удалось добиться
лишь в 1977 году: письмо, полученное 9 февраля редакцией журнала
"Nature", в котором говорилось об отождествлении пульсара в соз-
вездии Паруса с видимой звездой, было подписано двенадцатью ав-
торами. Отметим, что наряду с этими двенадцатью учеными, работа-
ющими в Англии и Австралии, в предшествующие восемь лет многие
астрономы на лучших телескопах мира занимались поисками видимой
звезды, "мигающей" в том же ритме, что и пульсар в созвездии Па-
руса. Так что становится ясно, сколь масштабному всемирному бде-
нию был объявлен отбой этой заметкой. Между прочим, Майкл Дис-
ней, участвоваший в открытии оптического пульсара в Крабовидной
туманности, входил и в эту группу ученых.
У всех остальных пульсаров нет и следа излучения в видимой
области. Это наводит на следующую мысль. Что бы ни представляли
собой пульсары, они возникают в результате взрыва сверхновой.
Вначале период пульсара мал - еще меньше, чем у пульсара в Кра-
бовидной туманности. Такой пульсар излучает не только в радиоди-
апазоне, но и в видимой области спектра. С течением времени час-
тота импульсов уменьшается. Не более чем за тысячу лет период
пульсара становится равным периоду пульсара в Крабовидной туман-
ности, а затем достигает и периода пульсара в созвездии Паруса.
Наряду с увеличением периода ослабевает и интенсивность излуче-
ния в видимой области. Когда период пульсара превышает одну се-
кунду, его оптическое излучение давно уже исчезло, и его удается
обнаружить лишь по импульсам в радиодиапазоне. Поэтому с видимы-
ми источниками отождествлены лишь два пульсара с самыми коротки-
ми периодами. Они относятся к самым молодым пульсарам, и вокруг
них удается даже различить газовые облака - останки сверхновых.
Более старые пульсары давно уже растратили свою способность из-
лучать в видимой области.
Но что же такое пульсары ? Что остается, когда жизнь звезды
заканчивается гигантским взрывом ? Мы уже знаем, что пространс-
твенная область, из которой исходит излучение пульсара, должна
быть очень малой. Какие же процессы могут происходить в столь
малой области так быстро и с такой регулярностью, чтобы можно
было привлечь их к объяснению феномена пульсара ? Быть может,
это звезды которые, подобно цефеидам, периодически "раздуваются"
и вновь сжимаются ? Но в таком случае плотность звездного ве-
щества должна быть очень высокой, так как лишь тогда период ос-
цилляций может быть достаточно мало ( вспомним, что период изме-
нения блеска цефеид составляет несколько суток ). Нас же интере-
суют объекты, которые способны осциллировать с периодом сотые
доли секунды. Даже самые плотные из звезд, белые карлики, не
способны совершать столь быстрые колебания. Возникает вопрос:
могут ли звезды иметь еще более высокую плотность, оставляющие
по плотности далеко позади белые карлики с их тонными на куби-
ческий сантиметр ?
Первое соображение на этот счет высказали советский физик и
два астронома из Пасадены задолго до обнаружения пульсаров. Лев
Ландау (1908-1968) в 1932 году доказал, что вещество с еще более
высокой плотностью может находиться в равновесии с гравитацион-
ными силами. Тогда же в Пасадене на самом большом по тем време-
нам телескопе в мире работал выходец из Германии Вальтер Бааде.
Он был, несомненно, одним из лучших астрономов-наблюдателей на-
шего столетия. Там же работал и швейцарец Фриц Цвикки, человек
столь же напористый, сколь и неистощимый на выдумки. Еще в 1934
году эти два ученых утверждали, что смогут существовать звезды с
исключительно высокой плотностью - как предсказывал и Ландау,-
звезды, состоящие почти полностью из одних нейтронов. В 1939 го-
ду физики Роберт Оппенгеймер и Джордж Волков поместили в амери-
канском физическом журнале "Physical Review" статью о нейтронных
звездах. Имя одного из авторов этой статьи стало известно во
всем мире задолго до того, как астрономы всерьез занялись нейт-
ронными звездами: Оппенгеймер сыграл ведущую роль в создании
американской атомной бомбы.
Оппенгеймер и Волков доказали, что звездное вещество, в ко-
тором электроны и протоны соединились в нейтроны, может удержи-
ваться в виде шара с собственными гравитационными силами. Зная
свойства нейтронного вещества, можно осуществить теоретические
расчеты нейтронных звезд. Анализ математической модели нейтрон-
ной звезды показывает, что плотность ее должна быть очень вели-
ка: масса, равная солнечной, заключена в объеме шара с попереч-
ником 30 км. - в кубическом сантиметре содержится миллиарды тонн
нейтронной материи ( рис. 7 ). Но нейтронные звезды, если заста-
вить их осциллировать, будут делать это гораздо быстрее, чем
пульсары. Поэтому в качестве объяснения периода пульсаров объем-
ная осцилляция нейтронных звезд не происходит.
Итак, мы вновь вернулись к тому, с чего начали. Мы искали
плотные звездоподобные объекты, которые могли бы совершать дос-
таточно быстрые колебания,- и белые карлики оказались слишком
медленными, а гипотетические нейтронные звезды слишком быстрыми.
Об открытии пульсаров Томас Голд узнал, будучи преподавате-
лем Корнельского университета в городе Итака ( штат Нью-Йорк ).
И вот, в то время как в научных журналах одна за другой публико-
вались скороспелые попытки объяснить существование пульсаров (
сводившиеся, главным образом, к попыткам спасти гипотезу пульси-
рующих звезд ), мысль Томаса Голда пошла в совершенно ином нап-
равлении.
К регулярным периодическим движениям небесных тел относятся
и собственное вращение объекта. Солнце, например, совершает пол-
ный оборот вокруг своей оси за 27 суток; существуют звезды, ко-
торые вращаются гораздо быстрее. Не связано ли строгая периодич-
ность пульсаров с какими-либо вращательным движением ? Тогда
объект должен был бы совершать полный оборот менее чем за секун-
ду - в случае пульсара в Крабовидной туманности тридцать оборо-