их недр вырываются мощные потоки протонов, которые, увязая в магнитном поле, испускают гамма - и рентгеновское излучение.
Нейтронные звезды были идентифицированы как источники мощных гамма - всплесков после огромной гамма вспышки 5 марта 1979 года, когда было выброшено столько энергии в течение первой же секунды, сколько Солнце излучает за 1 000 лет. Недавние наблюдения за одной из наиболее «активных» в настоящее время нейтронных
звёзд, похоже, подтверждают теорию о том, что нерегулярные мощные всплески гамма- и рентгеновского излучений вызваны «звездо – трясениями». В 1998 году внезапно очнулся
от «дремоты» известный SGR, который 20 лет не подавал признаков активности и выплеснул почти столько же энергии, как и гамма-вспышка 5 марта 1979 года. Больше всего поразило исследователей при наблюдении за этим событием резкое замедление скорости вращения звезды, говорящее о ее разрушении. Для объяснения мощных гамма
и рентгеновских вспышек была предложена модель магнетара - нейтронной звезды со сверхсильным магнитным полем. Если нейтронная звезда рождается, вращаясь
очень быстро, то совместное влияние вращения и конвекции, которая играет важную роль в первые несколько секунд существования нейтронной звезды, может создать огромное магнитное поле в результате сложного процесса, известного как «активное динамо» (таким же способом создается поле внутри Земли и Солнца). Теоретики были поражены, обнаружив, что такое динамо, работая в горячей,
новорожденной нейтронной звезде, может создать магнитное поле, в 10 000 раз более
сильное, чем обычное поле пульсаров. Когда звезда охлаждается (секунд через 10 или 20),
конвекция и действие динамо прекращаются, но этого времени вполне достаточно, что- бы успело возникнуть нужное поле.
Магнитное поле вращающегося электропроводящего шара бывает неустойчивым, и
резкая перестройка его структуры может сопровождаться выбросом колоссальных количеств энергии (наглядный пример такой неустойчивости — периодическая переброска магнитных полюсов Земли). Аналогичные вещи случаются и на Солнце, во взрывных событиях, названных «солнечными вспышками». В магнетаре доступная магнитная энергия огромна, и этой энергии вполне достаточно для мощи таких гигантских вспышек, как 5 марта 1979 и 27 августа 1998 годов. Подобные события неизбежно вызывают глубокую ломку и изменения в структуре не только электрических токов
в объеме нейтронной звезды, но и ее твердой коры.
Другим загадочным типом объектов, которые испускают мощное рентгеновское излучение во время периодических взрывов, являются так называемые аномальные рентгеновские пульсары — АХР. Они отличаются от обычных рентгеновских пульсаров тем, что излучают только в рентгеновском диапазоне. Ученые полагают, что SGR и АХР являются фазами жизни одного и того же класса объектов, а
именно магнетаров, или нейтронных звезд, которые гамма - кванты, черпая энергию из магнитного поля. И хотя магнетары на сегодня остаются детищами теоретиков, и нет достаточных данных, подтверждающих их существование, астрономы упорно ищут нужные доказательства.
БЕСПОКОЙНОЕ СОСЕДСТВО
Знаменитая космическая обсерватория «Чандра» обнаружила сотни объектов (в том числе и в других галактиках), свидетельствующих о том, что не всем нейтронным звездам
предназначено вести жизнь в одиночестве. Такие объекты рождаются в двойных системах, которые пережили взрыв сверхновой, создавший нейтронную звезду. А иногда случается, что одиночные нейтронные звезды в плотных звездных областях типа шаровых скоплений захватывают себе компаньона. В таком случае нейтронная звезда будет «красть» вещество у своей соседки. И в зависимости оттого, насколько массивная звезда составит ей компанию, эта «кража» будет вызывать разные последствия.
Газ, текущий с компаньона, массой, меньшей, чем у нашего Солнца, на такую «крошку», как нейтронная звезда, не сможет сразу упасть из - за своего слишком большого углового момента. Поэтому он создает вокруг нее так называемый аккреционный диск из «украденной» материи. Трение при накручивании на нейтронную звезду и сжатие в гравитационном поле разогревает газ до миллионов градусов, и он начинает испускать рентгеновское излучение.
Другое интересное явление, связанное с строчными звездами, имеющими мало-
пассивного компаньона, — рентгеновские вспышки (барстеры). Они обычно длятся от нескольких секунд до нескольких минут и в максимуме дают звезде светимость, почти в 100 тысяч раз превышающую светимость Солнца. Эти вспышки объясняют тем, что, когда водород и гелий переносятся на нейтронную звезду с компаньона, они образуют плотный слой. Постепенно этот слой становится настолько плотным и горячим, что начинается реакция термоядерного синтеза и выделяется огромное количество энергии. По мощности это эквивалентно взрыву всего ядерного арсенала землян на каждом квадратном сантиметре поверхности нейтронной звезды в течение минуты.
Совсем другая картина наблюдается, если нейтронная звезда имеет массивного компаньона. Звезда-гигант теряет вещество в виде звездного ветра (исходящего от ее поверхности потока ионизированного газа), и огромная гравитация нейтронной звезды захватывает часть этого вещества себе. Но здесь вступает в свои права магнитное поле, которое заставляет падающее вещество течь по силовым линиям к магнитным полюсам. Это означает, что рентгеновское излучение, прежде всего, генерируется в горячих точках на полюсах, и если магнитная ось и ось вращения звезды не совпадают, то яркость звезды оказывается переменной — это тоже пульсар, но только рентгеновский.
Нейтронные звезды в рентгеновских пульсарах имеют компаньонами яркие звезды-гиганты. В барстерах же компаньонами нейтронных звезд являются слабые по блеску
звезды малых масс. Возраст ярких гигантов не превышает нескольких десятков миллионов лет, тогда как возраст «слабых» звезд - карликов может насчитывать миллиарды лет, поскольку первые гораздо быстрее расходуют свое ядерное топливо, чем вторые. Отсюда следует, что барстеры — это старые системы, в которых магнитное поле успело со временем ослабеть, а пульсары — относительно молодые, и потому магнитные поля в них сильнее. Может быть, барстеры когда-то в прошлом пульсировали, а пульсарам еще предстоит вспыхивать в будущем.
С двойными системами связывают и пульсары с самыми короткими периодами (менее 30 миллисекунд) — так называемые миллисекундные пульсары. Несмотря на их быстрое вращение, они оказываются не молодыми, как следовало бы ожидать, а самыми старыми.
Возникают они из двойных систем, где старая, медленно вращающаяся нейтронная
звезда начинает поглощать материю со своего, тоже уже состарившегося компаньона (обычно красного гиганта). Падая на поверхность нейтронной звезды, материя передает ей вращательную энергию, заставляя крутиться все быстрее. Происходит это до тех пор, пока компаньон нейтронной звезды, почти освобожденный от лишней массы, не станет белым карликом, а пульсар не оживет и не начнет вращаться со скоростью сотни оборотов в секунду.
Впрочем, недавно астрономы обнаружили весьма необычную систему, где компаньоном миллисекундного пульсара является не белый карлик, а гигантская раздутая красная звезда. Ученые полагают, что они наблюдают эту двойную систему как раз в стадии «освобождения» красной звезды от лишнего веса и превращения в белого карлика.
Если эта гипотеза неверна, тогда звезда-компаньон может быть обычной звездой из шарового скопления, случайно захваченной пульсаром.
Почти все нейтронные звезды, которые известны в настоящее время, найдены или в рентгеновских двойных системах, или как одиночные пульсары. И вот недавно «Хаббл»
заметил в видимом свете нейтронную звезду, которая не является компонентом двойной системы и не пульсирует в рентгеновском и радиодиапазоне. Это дает уникальную возможность точно определить ее размер и внести коррективы в представления о составе и структуре этого причудливого класса выгоревших, сжатых гравитацией звезд. Эта звезда была обнаружена впервые как рентгеновский источник и излучает в этом диапазоне не потому, что собирает водородный газ, когда движется в пространстве, а потому, что она все еще молода. Возможно, она является остатком одной из звезд двойной системы. В результате взрыва сверхновой эта двойная система разрушилась, и бывшие соседи начали независимое путешествие по Вселенной.