Смекни!
smekni.com

Кометы (стр. 4 из 6)

Этот пример может служить иллюстрацией трудностей, с кото­рыми ученые сталкиваются при определении кометной орбиты по малому количеству наблюдений.

Причина свечения комет и их химический состав

Во времена Ломоносова еще ничего не было известно о законе изменения блеска комет и тем более об их спектрах. Однако Михаил Васильевич Ломо-

носов со свойственной ему научной проницатель­ностью охарактеризовал свечение комет с точки зрения, близкой к современной. Он писал: «Комет бледного сияния и хвостов причина недовольно еще изведана, которую я без сомнения в электрической силе полагаю...»

Светись комета только отраженным светом, ее блеск с приближением к Солнцу (после учета изме­нения ее расстояния от Земли) менялся бы обратно пропорционально квадрату расстояния ее от Солнца. Примерно так и ведет себя блеск ее звездообразного ядра, что согласуется с тем, что оно состоит в основ­ном из твердых кусков, попросту отражающих свет Солнца.

Это подтверждается также и характером спектра ядра. Обычно он является копией солнечного спект­ра, как и полагается спектру отраженного света. Но когда ядро кометы приближается к Солнцу, то в его спектре появляются яркие линии излучения натрия. В спектре ядра кометы 1882 г., подошедшей чрезвычайно близко к Солнцу, были обнаружены даже яркие линии железа и никеля, пропавшие, когда комета от него удалилась. Потом исчезли и линии натрия. Все это нужно объяснить тем, что твердое ядро кометы, когда оно подходит очень близко к Солнцу, нагревается настолько, что начи­нает испаряться, превращаясь в раскаленный, све­тящийся пар. Натрий превращается в пар и светится при меньшей температуре, чем железо, .т. е. на боль­шем расстоянии от Солнца; ближе к нему не выдер­живает и железо. Распределение яркости в голове кометы вследствие таких процессов подробно иссле­довал теоретически Д. О. Мохнач (в Ленин­граде).

Блеск головы кометы меняется с приближением к Солнцу значительно быстрее, чем обратно пропор­ционально квадрату расстояния, чаще всего пример­но как его 3-я или 4-я степень. Это показывает, что свечение (блеск) головы кометы зависит от Солнца, но не является просто отраженным. Очевидно, Солн­це возбуждает свечение кометы, но свечение холод­ное; это свечение возникает не вследствие обращения кометы в раскаленный пар, так как комета светится даже будучи далеко от Солнца, где ее температура

должна быть много ниже нуля. Пыль не может дать подобного свечения,— его могут дать только газы.

Поведение блеска комет все же очень прихотливо, и описанная выше зависимость от расстояния до Солнца меняется не только от кометы к комете, но и у одной кометы на ее пути вокруг Солнца. Это го­ворит безусловно о неустойчивости кометного ядра, о возможности быстрых изменений на его поверх­ности. Ярким примером этого является история ко­меты, открытой чешским астрономом Когоутеком ранней весной 1973 г. В это время она была еще очень далеко от Солнца и поэтому была очень слаба (16-й звездной величины). Но вычисленная вскоре ее ор­бита оказалась имеющей перигелий очень близко к Солнцу, всего 0,14 а. е. или 21.10е км. Это очень вдохновило наблюдателей, так как, предполагая, что для нее оправдается закон повышения блеска как четвертая или даже более высокая степень расстоя­ния от Солнца, они ожидали, что комета в декабре и январе станет почти столь же яркой, как Венера, и надеялись изучить ее очень подробно. Однако комета увеличивала блеск очень медленно и в декабре была лишь едва видима глазом, тем более, что наблюдать ее мешал свет зари. Лишь в январе 1974 г. она стала примерно 2 зв. величины и удалось ее изучить инст­рументами средней силы. Шумиха, поднятая журна­листами по поводу этой «кометы века», как они ее назвали, оказалась преждевременной.

Некоторые молекулы кометного газа поглощают солнечный свет, и затем снова его же излучают в той же длине волны. Такое излучение физики называют резонансным. Другие молекулы поглощают энергию Солнца в виде ультрафиолетовых лучей, но излучают их в виде лучей с другой длиной волны, видимых глазу. Такое свечение физики называют флуоресцен­цией. Пример флуоресценции представляют некото­рые вещества на Земле, например, сернистый цинк;

«освещенные» невидимыми глазу рентгеновскими лу­чами в темноте, они от этого светятся видимым светом, часто зеленым или голубым. Теория проис­хождения таким путем кометных спектров, разрабо­танная в Бельгии Свингсом, подтверждается новей­шими детальными наблюдениями.

Спектр головы кометы показывает, что она состо­ит из молекул, т. е. химических соединений, излу­чающих не узкие яркие линии, а широкие полосы. Химический состав этих газов удалось выяснить подробнее лишь за последние годы. Оказалось, что голова кометы состоит из молекул углерода (Сз), циана (СК), углеводорода (СН). Недавно были об­наружены гидрид азота, гидроксил (ОН) .

В 1970 г. было произведено первое наблюдение кометы с борта искусственного спутника Земли ОАО-2. С него в ультрафиолетовом свете (не дохо­дящем до Земли вследствие его поглощения в ее атмосфере) было обнаружено, что ядро кометы Та-го — Сато — Косака 1969 @ было окружено водо­родным облаком, которое по размерам было больше, чем Солнце. Огромность этого облака сама по себе не удивила уже астрономов, потому что еще три­дцатью годами ранее автор этих строк доказал, что у кометы 1943 г. пары циана составляли оболочку, большую чем Солнце.

Яркость разных полос в спектре у разных комет бывает различна, и в одной и той же комете она ме­няется с изменением ее расстояния от Солнца, по-видимому, как вследствие изменения пропорции га­зов, составляющих голову кометы, так и вследствие изменений условий их свечения. Главную роль все же играют всегда углерод и циан, который является, как известно, крайне ядовитым газом и главной со­ставной частью сильного яда — синильной кислоты.

В спектре головы кометы, кроме ярких полос, присутствует и непрерывный спектр, который, воз­можно, также принадлежит молекулам газа и не является спектром света, отраженного от Солнца. Однако большинство ученых полагает, что пыль в голове кометы все же должна быть и что из нее же состоят изогнутые хвосты (II типа по классификации Бредихина), так как у них тоже наблюдается не­прерывный спектр. Если бы в этом спектре удалось обнаружить и темные линии, имеющиеся в спектре Солнца, наличие пыли в хвостах комет было бы до­казанным.

Хвост кометы, когда он широкий и яркий, иногда обнаруживает непрерывный спектр, свидетельству­ющий о наличии в нем пыли. По большей части, од­нако, спектр хвоста кометы газовый, обнаруживаю­щий наличие ионизованных углекислоты СО2, окиси углерода СО, молекул азота N2. Как известно, окись углерода СО образуется в печах при неполном сгорании топлива и тоже ядовита, хотя и не так, как циан. Ее называют угарным газом. Вы видите, что на вопрос о химическом составе комет ответить кратко нельзя, так же как, например, на вопрос о содержании большой цирковой программы: состав комет разнообразен, он сложен и в разных частях комет (в ядре, голове и хвосте) различен.

6. ОТКРЫТИЕ ГАЛЛЕЯ

Верный друг Ньютона Эдмунд Галлей питал слабость к кометам. Его великий учитель, открыв закон всемирного тяготения, доказал, что, подчи­няясь этому закону, два тела могут двигаться около общего их центра тяжести только по одному из конических сечений: эллипсу, параболе или гипер­боле. Ньютон доказал, что, поскольку притяжения планет друг другом малы в сравнении с могучим притяжением Солнца, каждая из них описывает около Солнца почти правильный эллипс.

У Ньютона было много дела и без того, и за по­добную трудоемкую задачу взялся Галлей. Он на­чал с того, что усовершенствовал способ вычисления кометных орбит, придуманный Ньютоном. Потом Галлей собрал из разных книг наблюдения над положением и движением на небе разных комет с 1337 г. по 1698 г. Закончив свой труд, Галлей на­писал:

«Собрав отовсюду наблюдения комет, я составил таблицу — плод обширного и утомительного труда,— небольшую, но небесполезную для астрономов... Читателю астрономических трудов следует обратить внимание на то, что предложенные мною числа я получил в результате самых точных наблюдений и опубликовал их не прежде, чем после многих лет доб­росовестного изучения, сделав столько, сколько мог».

Составив таблицу, Гадлей, помня указания Нью­тона, стал сравнивать орбиты комет, которые в ней заключались, и вот к чему он пришел:

«Довольно многое заставляет меня думать, что комета 1531 г., которую наблюдал Апиан, была тож­дественна с кометой 1607 г., описанной Кеплером и Лонгомонтаном, а также с той, которую наблюдал я сам в 1682 г. Все элементы сходятся в точности, и только неравенство периодов, из которых первый равен 76 годам и 2 месяцам, а второй 74 годам и ЮУг месяцам, по-видимому, противоречит этому, но раз­ность между ними не столь велика, чтобы ее нельзя было приписать каким-нибудь физическим причинам.

Мы знаем, например, что движение Сатурна так сильно нарушается притяжением других планет, особенно Юпитера, что время обращения Сатурна известно нам лишь с точностью до нескольких дней. Насколько же больше должна подвергаться таким влияниям комета, уходящая от Солнца почти в 4 раза далее Сатурна и скорость которой, увеличенная очень мало, может превратить ее эллиптическую орбиту в параболическую. Подобными причинами я объясняю неравенство периодов кометы и поэтому с уверенностью решаюсь предсказать возвращение той же кометы в 1758 г. Если она вернется, то не будет более никакой причины сомневаться, что и другие кометы должны возвращаться... но многие века пройдут, прежде чем мы узнаем количество подобных тел, обращающихся вокруг общего их центра — Солнца...».