d2z/dt2 = - (mz/r2)z + azu + aza + azc + azл + azк
2.4.3. РАСЧЕТ ПАРАМЕТРОВ ТЕКУЩЕЙ ОРБИТЫ КА
Полученная система уравнений движения ЦМ КА интегрируется методом Рунге-Кутта 5-го порядка с переменным шагом. Начальные условия x0, y0, z0, Vx0, Vy0, Vz0 - в абсолютной системе координат, соответствуют начальной точке вывода при учете ошибок выведения. После интегрирования мы получаем вектор состояния КА (x, y, z, Vx, Vy, Vz) в любой момент времени.
По вектору состояния можно рассчитать параметры орбиты. соответствующие этому вектору состояния.
а) Фокальный параметр - р.
р = C2/mz, где С - интеграл площадей.
C = r ´ V, |C| = C = Ö(Cx2+Cy2+Cz2)
Cx = yVz - zVy
Cy = zVx - xVz - проекции на оси абсолютной СК
Cz = xVy - yVx
б) Эксцентриситет - е.
e = f/mz, где f - вектор Лапласа
f = V ´ C - mzr/r, |f| = f = Ö(fx2+fy2+fz2)
fx = VyCz - VzCy - mzx/r
fy = VzCx - VxCz - mzy/r - проекции на оси абсолютной СК
fz = VxCy - VyCx - mzz/r
в) Большая полуось орбиты.
a = p/(1 - e2)
г) Наклонение орбиты - i.
Cx = Csin(i)sinW
Cy = - Csin(i)cosW
Cz = Ccos(i)
можно найти наклонение i = arccos(Cz/C)
д) Долгота восходящего узла - W.
Из предыдущей системы можно найти
sinW = Cx/Csin(i)
cosW = - Cy/Csin(i)
Так как наклонение орбиты изменяется несильно в районе i = 97,6°, мы имеем право делить на sin(i).
Если sinW => 0, W = arccos (-Cy/Csin(i))
Если sinW < 0, W = 360 - arccos (-Cy/Csin(i))
е) Аргумент перицентра - w.
fx = f(coswcosW - sinwsinWcos(i))
fy = f(coswsinW + sinwcosWcos(i))
fz = fsinwsin(i)
Отсюда найдем
cosw = fxcosW/f + fysinW/f
sinw = fz/fsin(i)
Если sinw > 0, w = arccos (fxcosW/f + fysinW/f)
Если sinw < 0, w = 360 - arccos (fxcosW/f + fysinW/f)
ж) Период обращения - Т.
T = 2pÖ(a3/mz)
Графики изменения элементов орбиты при действии всех, рассмотренных выше, возмущающих ускорений в течение 2-х периодов (Т = 5765 с) приведены на рис. 1-12.
Графики изменения во времени возмущающих ускорений приведены на рис. 13-18.
2.5. ПРОВЕДЕНИЕ КОРРЕКЦИИ ТРАЕКТОРИИ МКА
Существующие ограничения на точки старта РН и зоны падения отработавших ступеней РН, а также ошибки выведения не позволяют сразу же после пуска реализовать рабочую орбиту. Кроме того, эволюция параметров орбит под действием возмущающих ускорений в процессе полета МКА приводит к отклонению параметров орбиты КА от требуемых значений. Для компенсации воздействия указанных факторов осуществляется коррекция орбиты с помощью корректирующей двигательной установки (КДУ), которая располагается на борту МКА.
В данной работе проведена разработка алгоритма коррекции, моделирование процесса коррекции и расчет топлива, необходимого для проведения коррекции.
Из-за различных причин возникновения отклонений элементов орбиты проводится:
- коррекция приведения - ликвидация ошибок выведения и приведение фактической орбиты к номинальной с заданной точностью.
- коррекция поддержания - ликвидация отклонений параметров орбиты от номинальных, возникающих из-за действия возмущающих ускорений в процессе полета.
Для того, чтобы орбита отвечала заданным требованиям, отклонения параметров задаются следующим образом:
- максимальное отклонение наклонения орбиты Di = 0,1°
- предельное суточное смещение КА по долготе Dl = 0,1°
Следовательно, максимальное отклонение периода орбиты DT = 1,6 сек.
Алгоритм коррекции следующий:
1) Коррекция приведения.
2) Коррекция поддержания.
2.5.1. КОРРЕКЦИЯ ПРИВЕДЕНИЯ
После окончания процесса выведения МКА, проводятся внешне-траекторные измерения (ВТИ). Эти измерения обеспечивают, по баллистическим расчетам, знание вектора состояния с требуемой точностью через 2 суток. После этого начинается коррекция приведения.
Предложена следующая схема проведения коррекции:
а) Коррекция периода.
б) Коррекция наклонения.
Корректирующий импульс прикладывается в апсидальных точках, либо на линии узлов в течение 20 сек и происходит исправление одного параметра орбиты. Таким образом используется однопараметрическая, непрерывная коррекция.
а) Коррекция периода.
Осуществляется в два этапа:
- коррекция перицентра
- коррекция апоцентра
Сначала осуществляется коррекция перицентра - приведение текущего расстояния до перицентра rp к номинальному радиусу rн = 6952137 м. После измерения вектора состояния рассчитываются параметры орбиты. Далее определяется нужный корректирующий импульс DVк. Направление импульса (тормозящий или разгоняющий) зависит от взаимного расположения перицентра орбиты и радиуса номинальной орбиты. Для этого вычисляется Drp = rp - rн.
Возможны ситуации:
1)
Drp < 0 - прикладывается разгоняющий импульс2) Drp > 0 - прикладывается тормозящий импульс
КА долетает до апоцентра и в апоцентре прикладывается корректирующий импульс. Время работы КДУ - 20 сек.
Так как время работы КДУ ограничено, а DVк может быть большим, следовательно, далее рассчитывается максимальный импульс скорости DVmax за 20 сек работы двигателя:
DVmax = Pt/m = 25´20/597 = 0,8375 м/с
Если DVк > DVmax в апоцентре прикладывается импульс DVк = DVmax. В результате этого rp немного корректируется. На следующем витке опять рассчитывается DVк, и если на этот раз DVк < DVmax, в апоцентре прикладывается импульс DVк. КДУ включается не на полную мощность P = (DVк/DVmax)Pmax.
Время включения = 20 сек.
Это происходит до тех пор, пока не приблизится к rp с заданной точностью.
После того, как скорректирован перицентр, начинается коррекция апоцентра. Рассчитываются параметры орбиты и нужный корректирующий импульс, такой, чтобы ra = rн = 6952137 м. Направление корректирующего импульса также зависит от величин ra и rн.
Вычисляется Dra = ra - rн.
Возможна ситуация:
Dra > 0 - в перицентре прикладывается тормозящий импульс.
КА долетает до перицентра и в перицентре прикладывается корректирующий импульс. Время работы КДУ - 20 сек.
Так как время работы КДУ ограничено, а DVк может быть большим, следовательно, далее рассчитывается максимальный импульс скорости DVmax за 20 сек работы двигателя:
DVmax = Pt/m = 25´20/597 = 0,8375 м/с
Если DVк > DVmax, в перицентре прикладывается импульс DVк = DVmax. В результате этого немного корректируется ra. На следующем витке опять рассчитывается DVк, и если на этот раз DVк < DVmax, в перицентре прикладывается импульс DVк. КДУ включается не на полную мощность P = (DVк/DVmax)Pmax.
Время включения = 20 сек.
Это происходит до тех пор, пока ra не приблизится к rн с заданной точностью.
Таким образом осуществляется коррекция перехода.
б) Коррекция наклонения.
После коррекции периода проводятся внешне-траекторные измерения и получают вектор состояния КА. Если снова необходима коррекция периода ее проводят еще раз и снова измеряют вектор состояния КА.
Далее проводится коррекция наклонения по такой же схеме. Коррекция производится в точке пересечения орбиты КА с линией узлов.
После того, как рассчитаны корректирующие импульсы скорости, по формулам перехода проекции вектора на оси абсолютной системы координат. Далее рассчитывается корректирующее ускорение и подставляется в уравнения движения центра масс КА. После этого уравнения интегрируются методом Рунге-Кутта 5-го порядка с переменным шагом.
Графики изменения элементов орбиты в процессе коррекции приведения приведены на рис.19-30.
2.5.2. РАСЧЕТ ПОТРЕБНОГО ТОПЛИВА
Масса топлива, необходимого для проведения коррекции траектории рассчитывается по формуле Циолковского:
m = m0(1 - e-DVк/W)
m0 = 597 кг - начальная масса МКА (кг)
W = 2200 м/с - скорость истечения газов из сопла двигателя.
Результаты проведения коррекции приведения:
tн, с | tк, с | Dt, с | DVк, м/c | Имп. | m, кг | |
Коррекция периода | 176242 | 262592 | 300 | 12,1 | 15 | 3,26 |
Коррекция наклонения | 273984 | 432298 | 580 | 24,11 | 29 | 6,48 |
2.5.3.КОРРЕКЦИЯ ПОДДЕРЖАНИЯ
Основная задача МКА - проведение съемки определенных районов Земли по крайней мере один раз в сутки, т.е. трасса КА должна проходить над заданным районом каждые сутки.