Смекни!
smekni.com

Исследование движения центра масс межпланетных космических аппаратов (стр. 4 из 14)

где Cx = 2 - коэффициент аэродинамического сопротивления.

Sм = 2,5 м2 - площадь миделевого сечения - проекция КА на плос­кость, пер­пендикулярную направлению скорости полета.

V - скорость КА.

r - плотность атмосферы в рассматриваемой точке орбиты.

Так как исследуемая орбита - круговая с высотой Н = 574 км, бу­дем считать, что плотность атмосферы одинакова во всех точках ор­биты и равна плотности атмосферы на высоте 574 км. Из таб­лицы стандартной атмосферы находим плотность наиболее близ­кую к вы­соте Н = 574 км. Для высоты Н = 580 км r = 5,098´10-13 кг/м3.

Сила аэродинамического ускорения создает возмущающее каса­тельное ускорение aa:

Найдем проекции аэродинамического ускорения на оси абсолют­ной системы координат axa, aya, aza:

aa направлено против скорости КА, следовательно единичный век­тор направления имеет вид

ea = [Vx/|V|, Vy|V|, Vz/|V|], |V| = Ö(Vx2+Vy2 +Vz2)

Таким образом,

Значит

,
,

3) Возмущающее ускорение, вызванное давлением солнечного света.

Давление солнечного света учитывается как добавок к постоян­ной тяготения Солнца - Dmc. Эта величина вычисляется следующим об­разом:

Dmc = pSмA2/m

где p = 4,64´10-6 Н/м2 - давление солнечного света на расстоянии в одну астрономи­ческую единицу А.

A = 1,496´1011 м - 1 астрономическая единица.

m - масса КА.

Sм = 8 м2 - площадь миделевого сечения - проекция КА на плос­кость, пер­пендикулярную направления солнечных лучей.

Таким образом,

Dmc = 1,39154´1015 м3/c2.

4) Возмущающее ускорение, возникающее из-за влияния Солнца.

Уравнение движения КА в абсолютной системе координат OXYZ относительно Земли при воздействии Солнца:

где mz - постоянная тяготения Земли.

mc - постоянная тяготения Солнца.

r - радиус-вектор от Земли до КА.

rc - радиус-вектор от Земли до Солнца.

Таким образом, возмущающее ускорение, возникающее из-за влияния Солнца:

.

Здесь первое слагаемое есть ускорение, которое полу­чил бы КА, если он был непритягиваю­щим, а Земля отсутствовала.

Второе слагаемое есть ускорение, которое сообщает Солнце Земле, как непритягиваю­щему телу.

Следовательно, возмущающее ускорение, которое получает КА при движении относительно Земли - это разность двух слагаемых.

Так как rc>>r, то в первом слагаемом можно пренебречь r. Следо­ва­тельно

| rc - r| = Ö((xc-x)2+(yc-y)2+(zc-z)2)

где xc, yc, zc - проекции радиуса-вектора Солнца на оси абсолют­ной сис­темы координат.

Моделирование движения Солнца проводилось следующим об­ра­зом: за некоторый промежуток времени t Солнце относительно Земли сместится на угол J = Jн + wct,

где Jн = W + (90 - D) - начальное положение Солнца в эклиптиче­ской системе коор­динат.

W = 28,1° - долгота восходящего узла первого витка КА.

D = 30° - угол между восходящим узлом орбиты КА и терминато­ром.

wc - угловая скорость Солнца относительно Земли.

wc = 2p/T = 2p/365,2422´24´3600 = 1,991´10-7 рад/c = 1,14´10-5 °/c

Таким образом, в эклиптической системе координат проекции составляют:

xce = rccosJ

yce = rcsinJ

zce = 0

rc = 1,496´1011 м (1 астрономическая единица) - расстояние от Земли до Солнца

Плоскость эклиптики наклонена к плоскости экватора на угол e = 23,45°, проекции rc на оси абсолютной системы координат можно найти как

xc = xce = rccosJ

yce = ycecose = rccosJcose

zce = rcsinJsine

Таким образом, проекции возмущающего ускорения на оси абсо­лютной системы координат:

axc = - mcx/(Ö((xc-x)2+(yc-y)2+(zc-z)2))3

ayc = - mcy/(Ö((xc-x)2+(yc-y)2+(zc-z)2))3

azc = - mcz/(Ö((xc-x)2+(yc-y)2+(zc-z)2))3

С учетом солнечного давления

axc = - (mc-Dmc)x/(Ö((xc-x)2+(yc-y)2+(zc-z)2))3

ayc = - (mc-Dmc)y/(Ö((xc-x)2+(yc-y)2+(zc-z)2))3

azc = - (mc-Dmc)z/(Ö((xc-x)2+(yc-y)2+(zc-z)2))3

5) Возмущающее ускорение, возникающее из-за влияния Луны.

Уравнение движения КА в абсолютной системе координат OXYZ относительно Земли при воздействии Луны:

где mл = 4,902´106 м3/c2- постоянная тяготения Луны.

rл - радиус-вектор от Земли до Луны.

Таким образом, возмущающее ускорение, возникающее из-за влияния Луны:

Так как rл>>r, то в первом слагаемом можно пренебречь r. Следо­ва­тельно

|rл - r| = Ö((xл-x)2+(yл-y)2+(zл-z)2)

где xл, yл, zл - проекции радиуса-вектора Луны на оси абсолютной системы координат.

Движение Луны учитывается следующим образом: положение Луны в каждый момент времени рассчитывается в соответствии с данными астрономического ежегодника. Все данные заносятся в массив, и далее этот массив считается программой моделирования движения КА. В первом приближении принимается:

- орбита Луны - круговая.

- угол наклона плоскости орбиты Луны к плоскости эклиптики i = 5,15°.

- период обращения линии пересечения плоскостей лунной ор­биты и эклиптики (по ходу часовой стрелки, если смотреть с север­ного полюса) = 18,6 года.

Угол между плоскостями экватора Земли и орбиты Луны можно найти по формуле

cos(hл) = cos(e)cos(i) - sin(e)sin(i)cos(Wл)

где Wл - долгота восходящего узла лунной орбиты, отсчитыва­ется от направления на точку весеннего равноденствия.

e - угол между плоскостями эклиптики и экватора Земли.

Величина hл колеблется с периодом 18,6 лет между минимумом при hл = e - i = 18°18’ и максимумом при hл = e + i = 28°36’ при W = 0.

Долгота восходящего узла лунной орбиты Wл изменяется с тече­нием времени t на величину Wл = t´360/18,6´365,2422´24´3600.

Положение Луны на орбите во время t определяется углом

J л = t´360/27,32´24´3600.

По формулам перехода найдем проекции вектора положения Луны на оси абсолютной системы координат:

xл = rл(cosJлcosWл - coshлsinJлsinWл)

yл = rл(cosJлsinWл + coshлsinJлcosWл)

zл = rлsinhлsinJл

rл = 3,844´108 м - среднее расстояние от Земли до Луны

Таким образом, проекции возмущающего ускорения на оси абсо­лютной системы координат:

axл = - mлx/(Ö((xл!-x)2+(yл-y)2+(zл-z)2))3

ayл = - mлy/(Ö((xл!-x)2+(yл-y)2+(zл-z)2))3

azл = - mлz/(Ö((xл!-x)2+(yл-y)2+(zл-z)2))3

Уравнения возмущенного движения при действии корректирую­щего ускорения имеют вид:

или

d2x/dt2 = - (mz/r2)x + axu + axa + axc + axл + axк

d2y/dt2 = - (mz/r2)y + ayu + aya + ayc + ayл + ayк