Вихревые электромагнитные расходомеры. Особенности конструкции вихревых расходомеров с электромагнитным съемом сигнала представлен на рис.10.16. При движении электропроводной жидкости (проводника) в поле постоянного магнита наводится ЭДС. Вихри создают возмущение или пульсации ЭДС, которые фиксируются электродом, установленным за телом обтекания. Частота пульсаций ЭДС соответствует частоте вихреобразования. Такие расходомеры отличаются простой конструкции, возможностью автономного батарейного питания, низкой стоимостью, возможностью проведения имитационной поверки.
Рис. 10.16. Принцип действия вихревого электромагнитного расходомера
При этом приборы склонны к образованию отложений в проточной части вблизи магнита, имеют нестабильные метрологические характеристика и могут работать только в электропроводных средах.
Счетчики количества
Счетчики количества жидкости по принципу действия подразделяют на скоростные, объемные и весовые. Скоростные бывают со спиральной горизонтальной (для измерения больших расходов) и с вертикальной (малых расходов) вертушкой. Счетчики с вертикальной вертушкой, а также весовые не получили широкого распространения в промышленности, поэтому их рассматривать не будем.
Скоростные счетчики со спиральной горизонтальной вертушкой устанавливают в закрытых трубопроводах таким образом, чтобы через них проходил весь поток измеряемой жидкости. Протекающий через счетчик поток измеряемой жидкости воздействует на вертушку: чем больше средняя скорость протекающей жидкости, а, следовательно, и ее количество, тем быстрее вращается вертушка. Вертушка механически связана со счетным механизмом, шкала которого отградуирована в единицах количества (как правило, в м3).
Счетный механизм прибора может быть помещен непосредственно в измеряемой жидкости или защищен от нее сальником. В приборах, счетный механизм которых находится в измеряемой жидкости, показания отсчитывают через защитное стекло, отделяющее камеру расходомера от наружной среды. Такие приборы по своей конструкции более просты, однако их детали быстро изнашиваются от воздействия жидкости.
Поток поступающей жидкости выравнивается струевыпрямителем 2 (рис. 10.17) и направляется на лопатки вертушки 3, которая выполнена в виде многозаходного винта. Вращение вертушки через червячную пару и передаточный механизм 4 передается счетном механизму 5.
Рис. 10.17. Скоростной счетчик со спиральной горизонтальной вертушкой: 1 - корпус; 2 - струевыпрямитель; 3 -вертушка; 4 - передаточный механизм; 5 - счетный механизм
Объемные счетчики делятся на приборы с овальными шестернями, поршневые и дисковые. Рассмотрим принцип действия наиболее распространенного в промышленности счетчика с овальными шестернями (рис. 10.18). Его действие основано на вытеснении из измерительной камеры 1 прибора определенных объемов жидкости вращающимися овальными шестернями 2.
Обе шестерни находятся в непрерывном зацеплении и обкатывают друг друга. При этом на них действует разность давлений: между большим со стороны входа жидкости и меньшим со стороны выхода. В результате перепада давлений в трубопроводе (до и после счетчика) образуется сила, заставляющая шестерни вращаться. При этом каждая из шестерен при полном обороте проталкивает половину объема жидкости, поступающей в камеру, а обе шестерни за один оборот пропускают количество жидкости, равное полному объему камеры прибора.
Рис. 10.18. Схемы (I-III) работы объемного счетчика с овальными шестернями: 1 - камера; 2 - шестерни
Частота вращения овальных шестерен неравномерна и зависит в каждый момент времени от их взаимного расположения. Но это не влияет на процесс измерения, так как счетчик подсчитывает только число оборотов шестерен.
Вращение шестерен передается посредством магнитной муфты и передаточного механизма стрелочному указателю и счетному механизму. Магнитная муфта отделяет внутренние полости камеры от внешней среды, что дало возможность отказаться от сальниковых уплотнений, которые увеличивают трение.
Счетчики количества газа делятся на барабанные (для лабораторных измерений), клапанные (в основном используют в быту) и ротационные (для измерения больших количеств газа). Последние широко применяют в промышленности.
Механизм вращения лопастей ротационного газового счетчика аналогичен механизму вращения овальных шестерен для счетчиков количества жидкости. Валы каждой из лопастей вне корпуса имеют на конце шестерни, находящиеся в зацеплении, благодаря чему движение одной лопасти передается другой.
Благодаря тщательной обработке внутренней поверхности корпуса и трущихся поверхностей лопастей, а также точной их подгонке утечки газа в таких счетчиках минимальны. По сравнению с остальными газовыми счетчиками ротационные имеют меньшие габариты при одних и тех же пределах измерения.
Электромагнитные расходомеры (ЭМР). В основу работы ЭМР положен закон электромагнитной индукции Майкла Фарадея, согласно которому изменение полного магнитного потока Ф порождает в проводнике пропорциональную ему
индукционную электродвижущую силу (э.д.с.Е)
При этом э.д.с. возникает независимо от причины изменения магнитного потока – как от изменения самого поля, так и от движения проводника. Поэтому при движении проводящей жидкости в магнитном поле на ней наводится э.д.с. пропорциональная скорости изменения магнитного потока, а значит скорости движения жидкости.
Конструкции первичных преобразователей. Конструктивно первичный преобразователь расхода (ППР) электромагнитного типа состоит из проточной части – трубы из немагнитной стали, имеющей изоляционное покрытие, электродного узла, включающего два или более электродов и индуктора, состоящего из двух катушек и создающего магнитное поле.
Кроме трубы с футеровкой существуют конструкции с трубой из непроводящего материала и даже из металлической трубы без изолирующего покрытия. В последнем случае ППР, кроме изолированных от трубы измерительных электродов, имеет также две пары токовых и потенциальных электродов, с помощью которых сервоусилители, задают ток в трубе, пропорциональный расходу, поддерживая потенциал проводящей трубы равный потенциалу измерительного электрода.
Футеровка является самым практичным и применяемым элементом конструкции ППР. Материал футеровки определяет как технические параметры (стабильность геометрических размеров и формы), так и технологические (диапазон допустимых температур и давлений рабочей среды), и, кроме того, эксплутационные характеристики (надежность, долговечность). В качестве изоляционного покрытия используются: твердая резина, полиэтилены, полипропилены, эмаль, стекловолокно, фторопласты, в том числе армированные сеткой из нержавеющей стали для повышения прочности, керамика и т.п.
Для ППР больших диаметров при измерении водных растворов используется также твердые и обычные резины на базе фторкаучуков и бутиленовых каучуков.
Электродная система – весьма ответственный узел ЭМР, определяющий возможность утечек рабочей среды по электродам вследствие термоударов, вакуумирования и других причин. Электроды выполняются из различных металлов, обладающих высокой коррозионной стойкостью к измеряемой среде: никельсодержащие аустенитные стали (316L, 12Х18Н10Т), сплавы Ni-Mo (HastelloyÔ B, C, F), Ni-Cu (MonelÔ) Pt, Ti, Ta, Zr. Для компенсации термического и усталостного расширения применяют пружинные компенсаторы, а для контроля утечек – контрольные контакты. Поскольку наличие уплотнений имеет теоретическую возможность утечек, предпринимаются попытки исключить этот элемент, например, изготовлением цельной конструкции электрод-труба. 99,9%) к керамической трубе с помощью припоя на основе сплава Au-Ti.
ППР оснащают также дополнительными конструктивными элементами, например заземляющими кольцами или фланцами, которые выполняют как функцию центрирования ППР относительно трубопровода, так и обеспечивают электрическую связь с рабочей средой. При отсутствии заземляющих колец или фланцев, в трубу ППР вводится дополнительный (третий) электрод, который, кстати, может использоваться также для целей диагностики состояния процесса, неполного заполнения или опустошения канала.
Радикальное решение проблем утечек это отказ от контакта со средой и переход к бесконтактному (емкостному) принципу съема сигнала, позволяющий не только избежать утечки по электродам, но и исключить коррозию электродов, какое-либо искажение потока, позволяет измерять расходы жидкости с крайне низкой проводимостью. Недостатком такой конструкции следует считать несколько большую погрешность измерений, менее устойчивый измерительный сигнал и ограниченный ряд Ду используемых первичных преобразователей с проточной частью, выполненной из керамики.
Значительное потребление электроэнергии ЭМР по сравнению с другими принципами измерения расхода является, пожалуй, одним из главных недостатков метода. Самодиагностика узлов ЭМР и линий связи, предполагалась как одна из опций повышающая потребительские свойства ЭМР, но не более того. Диагностика работоспособного состояния ЭМР, включая метрологическую достоверность измерений, имеет крайне важное значение при учетных операциях (custody transfer), так как является основой для взаимных расчетов и предъявления претензий. Система диагностики новейших ЭМР серии Optiflux фирмы Krohne de facto задает новый стандарт для ЭМР нового поколения. Она охватывает не только практически все внутренние устройства ЭМР, но и состояние процесса и смежных устройств.