Смекни!
smekni.com

Методические указания по эксплуатации конденсационных установок паровых турбин электростанций рд 34. 30. 501 (стр. 5 из 39)

5.1. Оценка показателей работы конденсационной установки

5.1.1. Показатели работы конденсационной установки и взаимосвязь их между собой рассмотрены в разд. 2.2.

Основным интегральным показателем, отражающим влияние всех режимных факторов и состояния всех элементов конденсационной установки на ее работу, является давление отработавшего пара р2. Сравнение измеренного значения р2 с его нормативным значением при соответствующих режимных условиях по типовой характеристике конденсатора данного типа (см. разд. 5.3) может, однако, служить только для общей оценки качества работы конденсационной установки, "но не позволяет выявить причины ухудшения ее работы при значениях давления р2, превосходящих нормативные. Для определения причин повышения значения р2 по сравнению с нормативным должны использоваться другие показатели, доступные для определения в условиях эксплуатации, в том числе характеризующие кроме работы и состояния собственно конденсатора воздушную плотность вакуумной системы турбоагрегата, работу воздушных насосов и системы циркуляционного водоснабжения.

Оценку эффективности работы конденсационной установки по данным эксплуатационного контроля рекомендуется производить при номинальной или близкой к ней паровой нагрузке конденсатора D2. Отвечающие номинальному расходу отработавшего пара данные типовой характеристики наиболее точны, а показатели, используемые для оценки работы конденсационной установки, имеют при этом наибольшие значения, что также повышает точность контроля за ее работой.

5.1.2. При определенных расходах отработавшего пара и охлаждающей воды (способ контроля за расходом воды см. п. 5.2.5) и нормальном состоянии других элементов конденсационной установки эффективность работы и состояние собственно конденсатора характеризуются значением общего (среднего для всей поверхности охлаждения) коэффициента теплопередачи K, определяющегося формулой (2.4). Но поскольку коэффициент теплопередачи не может быть определен путем непосредственного измерения, в условиях эксплуатации значительно удобнее пользоваться для контроля за интенсивностью теплопередачи значением температурного напора на выходе из конденсатора.

Температура насыщения отработавшего пара t2 определяется по таблицам теплофизических свойств водяного пара по точно измеренному давлению в конденсаторе (см. п. 5.2.1); t измеряется на выходе охлаждающей воды из конденсатора (см. п. 5.2.2).

При загрязнении трубок температурный напор возрастает и сравнение его со значением нормативного напора, взятого по типовой характеристике при тех же значениях основных режимных параметров - паровой нагрузки конденсатора, температуры и расхода охлаждающей воды, позволяет оценить меру ухудшения состояния внутренней поверхности конденсаторных трубок, вызываемого образующимися на ней отложениями. Как правило, загрязнение трубок со стороны пара не наблюдается.

Температурный напор должен систематически контролироваться эксплуатационным персоналом электростанции. Контроль за ним должен производиться тем чаще, чем интенсивнее происходит загрязнение трубок, но не реже чем через каждые 10 дн. Если при контроле за температурным напором обнаруживается быстрое загрязнение трубок, то при применении на электростанции профилактической обработки охлаждающей воды режим обработки должен быть соответствующим образом скорректирован (см. разд. 14). Если профилактическая обработка охлаждающей воды на электростанции по каким-либо причинам не производится или недостаточно эффективна, то согласно § 18.15 ПТЭ, при ухудшении вакуума на 0,5% по сравнению с нормативным необходимо произвести очистку трубок принятым на электростанции способом (см. разд. 14.3).

5.1.3. Нагрев охлаждающей воды в конденсаторе Dtв = tt характеризует при заданной паровой нагрузке конденсатора D2 расход охлаждающей воды. Нагрев охлаждающей воды зависит от ее расхода, расхода отработавшего пара и от разности энтальпии отработавшего пара и уходящего из конденсатора конденсата Dh; последняя, как отмечалось в п. 2.2.2, мало изменяется с изменением расхода пара D2 (в пределах 2-3%). Для паровых нагрузок, близких к номинальной, значение Dh указывается в типовой характеристике.

При известном D2 расход охлаждающей воды может быть определен из теплового баланса конденсатора по значению нагрева воды Dtв (см. п. 5.2.5). Поскольку контроль за нагревом охлаждающей воды не вызывает трудности, он используется, в частности, для анализа влияния на расход охлаждающей воды режима и качества работы циркуляционных насосов (если отсутствуют данные непосредственного измерения расхода охлаждающей воды). Повышенный нагрев охлаждающей воды может свидетельствовать о недостаточной подаче воды циркуляционными насосами.

5.1.4. Значение гидравлического сопротивления конденсатора Н, меньшее нормативного, также может служить признаком недостаточной подачи воды насосами. По значению гидравлического сопротивления конденсатора осуществляется контроль за загрязнением посторонними предметами трубных досок конденсатора, а также живого сечения конденсаторных трубок. Измерение гидравлического сопротивления конденсатора не может, однако, достаточно отчетливо обнаружить загрязнение внутренней поверхности трубок, в особенности образования небольшого слоя накипи, незначительно уменьшающего сечения трубок. В таких случаях более чувствителен контроль по температурному напору (см. п. 5.1.2). Значительные же загрязнения трубок илистыми отложениями, застрявшей рыбой, взвешенными крупными частицами могут заметно отражаться на значении гидравлического сопротивления. Резко увеличивается гидравлическое сопротивление при загрязнении трубных досок (водорослями, листьями, ракушками или другими крупным наносами). Обнаруженное измерениями (см. п. 5.2.6) значительное увеличение значения Н может служить основанием для отключения половины конденсатора по охлаждающей воде и очистки трубных досок.

Зависимость гидравлического сопротивления конденсатора от расхода охлаждающей воды представляется графически в форме кривой, близкой к проходящей через начало координат параболе, постоянный множитель которой растет с увеличением степени загрязнения конденсатора.

5.1.5. Присосы воздуха в вакуумную систему турбоустановки слабо влияют на эффективность работы конденсационной установки, если количество воздуха, удаляемого из конденсатора воздухоудаляющими устройствами, находится в пределах значений, допускаемых согласно § 18.15 ПТЭ, и запас в рабочей подаче воздухоудаляющих устройств (пароструйных, водоструйных эжекторов), комплектующих данную турбоустановку, удовлетворяет рекомендациям [1].

Это не исключает, однако, необходимости периодического контроля за воздушной плотностью вакуумной системы турбоустановки для своевременного принятия мер, необходимых для поддержания присосов воздуха в допустимых пределах (см. разд. 12).

Согласно ПТЭ, контроль за воздушной плотностью вакуумной системы должен производиться по значению, непосредственно измеренного тем или иным способом расхода отсасываемого из конденсатора воздуха (см. п. 5.2.7). Проверка воздушной плотности вакуумной системы по скорости падения вакуума при отключенных воздухоудаляющих устройствах не должна применяться.

5.1.6. Переохлаждение конденсата (понижение температуры конденсата на выходе из конденсатора по сравнению с температурой насыщения, соответствующей давлению в конденсаторе может вызываться в регенеративном конденсаторе либо неисправностью автоматического электронного регулятора уровня конденсата в конденсатосборнике и заливом конденсатом нижних рядов трубок, либо чрезмерными присосами воздуха в вакуумную систему, особенно при низкой температуре и большом расходе охлаждающей воды. Для его предотвращения необходимо следить за исправным действием регулятора уровня при всех режимах и поддерживать требуемую плотность вакуумной системы (см. разд. 12).

Переохлаждение конденсата вызывает дополнительный расход пара в ПНД № 1 для компенсации излишне отведенной в конденсатор теплоты основного конденсата и, следовательно, недовыработку электроэнергии на участке проточной части турбины от последнего по ходу пара отбора до конденсатора. Понижение экономичности турбоагрегата при переохлаждении конденсата на 5 °C составляет 0,1-0,2%.

5.1.7. Совершенство конденсационной установки характеризуется также ее деаэрирующей способностью, обеспечивающей в современных конденсаторах минимальное содержание кислорода в конденсате, поступающем из конденсатора в питательную систему котла. Нарушение нормальной деаэрации в конденсаторе, а также попадание в конденсат воздуха через неплотности на участке "конденсатосборник - конденсатный насос" обнаруживается по результатам химических анализов проб конденсата, периодически отбираемых за конденсатным насосом, в которых определяется концентрация кислорода.

Согласно § 22.15 ПТЭ, содержание кислорода в конденсате после конденсатных насосов должно быть не более 20 мкг/кг.

5.1.8. Водяная плотность вальцовочных соединений конденсаторных трубок с трубными досками, отсутствие коррозионных и эрозионных повреждений трубок, вызывающих попадание охлаждающей воды в паровое пространство конденсатора и далее вместе с конденсатом в контур питательной воды, должны предотвращать повышение общей жесткости конденсата на выходе из конденсатора сверх допускаемой ПТЭ. Согласно § 22.15 ПТЭ, общая жесткость конденсата, контролируемая путем химических анализов проб конденсата, не должна превышать для прямоточных котлов и энергоблоков с влажнопаровыми турбинами (до конденсатоочистки) 0,5 мкг-экв/кг и для котлов с естественной циркуляцией значений указанных в табл. 5.1.