Смекни!
smekni.com

Методические указания по наладке системы регулирования процесса горения газомазутных котлов (стр. 6 из 22)

Для организации «непрерывной» перенастройки (названной так по аналогии с дискретной, рассмотренной выше) используется функция F13 — «кусочно-линейное преобразование», где в качестве входного параметра может быть применен тот же расход топлива, а выход, преобразованный под размерность С1 или t1 постоянно подключен к этим ячейкам.

Соответствующие зависимости для коэффициента передачи и времени интегрирования, обеспечивающие оптимальную работу регулятора на различных нагрузках, предварительно должны быть определены расчетным путем или экспериментально.

Настройка динамических сигналов (динамической связи) по расходу воздуха в схеме регулятора разрежения или по расходу топлива у регулятора соотношения «топливо — воздух» производится после того, как наладочные испытания регуляторов процесса горения закончены и система включена в работу. Так как оптимальные настройки регуляторов определялись из условия устойчивой работы (при заданных показателях) замкнутой системы регулирования при основном возмущении (т.е. поступающем со стороны регулирующего органа), то они не могут быть изменены при настройке канала ввода внешнего возмущения [6]. Другими словами, настройки дифференцированных сигналов по воздуху и топливу не связаны однозначно с настройками собственно контуров регулирования и их выбор предполагает определенную свободу действий для наладчика. Эта формулировка, однако, означает только то, что определение настроечных параметров дифференциатора может производиться экспериментально на работающем оборудовании и не будет влиять на устойчивость основного контура регулирования. При этом необходимо обращать внимание на следующее:

— в динамике (например, при изменении нагрузки котла) действие дифференциатора должно обеспечивать упреждающее воздействие на регулятор с целью заблаговременного изменения положения регулирующего органа в сторону снятия предполагаемого возмущения;

— влияние дифференциатора не должно быть чрезмерным (как по значению, так и по длительности), чтобы под его воздействием регулируемый параметр не изменил своего значения в сторону, противоположную нанесенному возмущению;

— в результате работы дифференциатора динамические отклонения регулируемого параметра в переходных режимах и длительность самого процесса регулирования должны сократиться.

4 МЕТОДИКА РАСЧЕТА СИСТЕМЫ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ ПРОЦЕССА ГОРЕНИЯ

За основу расчета может быть принята методика [1] с соответствующими изменениями, вызванными переходом от аналоговых к процессорным техническим средствам реализации АСР и параметров ее настройки.

Порядок расчета целесообразно изложить для наиболее сложной составной части системы регулирования процесса горения, каковой является регулятор подачи воздуха в котел. Этот регулятор имеет двухконтурную каскадную структуру и состоит из стабилизирующего и корректирующего регуляторов. В этом случае расчет параметров настройки регуляторов топлива и разрежения можно рассматривать как частный случай расчета общей системы, а именно, ее стабилизирующего контура.

Приведенную на рисунке 4 схему АСР воздуха с использованием корректирующего импульса по кислороду O2 можно упрощенно представить в виде набора последовательно включенных динамических звеньев (рисунок 7, а). Регулятор воздуха Wp(p) и участок воздухопровода Wоб1(p) образуют внутренний контур. Входными величинами этого контура являются управляющие воздействия Хзп1, возмущающие воздействия по расходу топлива и положению направляющих аппаратов ДРГ, а также воздействие корректирующего регулятора Wкор(p). Выходной величиной этого контура является давление воздуха Хрв.

Внутренний контур регулирования поддерживает заданное значение давления воздуха Хрв в соответствии с расходом топлива и степенью загрузки ДРГ, а также в соответствии с сигналом корректирующего регулятора. Так как инерционность участка воздухопровода является весьма незначительной, то может быть достигнуто значительное быстродействие этого контура регулирования без потери устойчивости. Переходные процессы во внутреннем контуре, вызванные изменением нагрузки котла или самопроизвольным изменением расхода топлива, завершаются раньше, чем эти же возмущения существенно повлияют на изменение выходной величины внешнего контура.

Передаточная функция Ф1(p) внутреннего малоинерционного контура регулирования имеет вид

. (4)

Внешний контур регулирования образуется корректирующим регулятором Wкор(p), малоинерционным контуром с передаточной функцией Ф1(p) и объектом регулирования с передаточной функцией Wоб2(p), входным воздействием которого является изменение давления воздуха Хрв, а выходным — изменение содержания свободного кислорода О2 в дымовых газах (см. рисунок 7, б).

Внешний контур характеризуется значительной инерционностью. Временная характеристика имеет вид, представленный на рисунке 6. Назначением внешнего контура является корректирование действий внутреннего контура в установившемся режиме, так как при компенсации возмущений топливом и загрузкой ДРГ внутренним контуром регулирования возможно появление ошибки из-за изменения качества топлива, нелинейности статических характеристик датчиков и других условий. Инерционность внешнего контура в основном определяется инерционностью датчика газоанализатора на О2 и газозаборным устройством.

Рисунок 6 — Временная характеристика внутреннего (а) и внешнего (б) контура системы регулирования подачи воздуха

а)

б)

в)

Рисунок 7 — Структурные схемы системы регулирования подачи воздуха:

а — общая; б — эквивалентная; в — внешнего контура

Для расчета системы регулирования по внешнему контуру преобразуем структурную схему рисунка 7, б к стандартному виду. Обозначив произведение передаточной функции малоинерционного контура Ф1(р) и участка регулирования Wоб2(p) через передаточную функцию приведенного объекта

, а корректирующий регулятор Wкор(p) — через приведенный регулятор
, получим структурную схему рисунка 7, в.

Передаточная функция Ф2(р) инерционного контура определяется по формуле

. (5)

Таким образом мы получили одноконтурную систему автоматического регулирования, состоящую из объекта регулирования и регулятора, методы расчета которой известны. Такое преобразование допустимо лишь в том случае, когда инерционность внутреннего стабилизирующего контура значительно меньше инерционности внешнего контура. При таком методе расчета приходится иметь дело не в чистом виде с объектом регулирования по внешнему контуру, а с некоторым приведенным объектом.

Таким образом для определения параметров динамической настройки корректирующего регулятора необходимо определить динамические характеристики приведенного объекта

(см. рисунок 7, в). Регулирующим воздействием для приведенного объекта является воздействие корректирующего регулятора или равнозначное воздействие (ручное) через задающий интегратор (см. рисунок 4). Временная характеристика приведенного объекта регулирования по кислороду определяется в следующем порядке: система регулирования подачи воздуха по стабилизирующему контуру с выбранными параметрами динамической настройки включается в работу; стабилизируется режим работы котла (энергоблока); наносится возмущение задающим интегратором (или настроечным задатчиком ЗУЗ рисунка 4) и регистрируется во времени изменение содержания кислорода в дымовых газах. Из полученной временной зависимости определяются характеристики приведенного объекта tо, То, Ко и по методу, изложенному ниже, вычисляются параметры динамической настройки корректирующего регулятора.

Однако на стадии предварительного расчета параметров настройки (до включения регулятора в работу), принимая во внимание высокое быстродействие стабилизирующего регулятора, можно считать, что нанесение возмущения во внешний контур стабилизирующим регулятором эквивалентно дистанционному возмущению направляющими аппаратами ДВ. Отсюда характеристики приведенного объекта можно в первом приближении принять равными характеристикам объекта регулирования по внешнему контуру,