Сигнализаторы не предназначены для количественной оценки фактической концентрации до или после срабатывания
Для исключения взрывоопасности технологических процессов концентраций – приборы, осуществляющие автоматический контроль концентрации горючих газов, паров и их смесей в воздухе с выдачей сигналов о достижении заранее установленного интервала значений довзрывных концентраций. К таким приборам относятся: сигнализатор утечки метана СУМ – 01, многосетевой газоанализатор – сигнализатор сероводорода ЕС – 172, индивидуальный сигнализатор «Астра» - для непрерывного используют автоматические сигнализаторы довзрывных автоматического контроля концентраций аммиака в атмосфере; многоцелевой сигнализатор метана МСМ – 2К – для измерения довзрывных концентрациях метана в помещениях; сигнализатор газов СГ – 1 для измерения довзрывных концентраций метана и других горючих газов в помещениях и на технологических объектах.
Газовые хроматографы предназначены для определения наличия микропримесей в различных веществах, материалах, а также в окружающей среде.
Метод газовой хроматографии основан на различном распределении молекул разделяемых компонентов между движущейся и неподвижной газовой фазами. Метод позволяет в одном анализе определить качественный и количественный состав сложной смеси, содержащей до 100-200 летучих компонентов.
К таким приборам относятся:
· Газовый хроматограф «Цвет – 530» для анализа смеси веществ различных классов с температурой кипения до 400 0;
· Газовый хроматограф М700 для анализа загрязнений в воздухе и воде;
· Газовый хроматограф «Цвет 600» для определения степени загрязненности воздуха производственных помещений и др.
Приборы для проведения измерений индикаторными трубками предназначены для анализа заражения воздуха атмосферы экспрессным методом с помощью прокачивания воздуха через индикаторные трубки.
Приборы состоят из воздухозаборных устройств различных типов (аспиратор сильфонный, воздухозаборное устройство газоанализатора УГ – 2, ручной поршневой насос) и комплектов индикаторных трубок (КИТ) по видам АХОВ. Основными преимуществами данного метода являются: быстрота проведения анализа и получение результатов на месте отбора проб воздуха; простота метода и устройства аппаратуры.
К таким приборам относятся: газораспределитель химический ГМ-Х, универсальный газоанализатор УГ-2, позволяющий определить наличие в воздухе таких АХОВ, как аммиак, хлор, окислы азота и др.; войсковой (полуавтоматический) прибор химической разведки ВПХР (ППХР), предназначенный для определения в полевых условиях наличия в воздухе атмосферы БХОВ, а с помощью дополнительных комплектов индикаторных трубок – и для определения таких АХОВ, как окислы азота, аммиак, хлор и др.
Многоцелевые приборы. При контроле химического загрязнения могут использоваться также различные многоцелевые приборы, позволяющие определить наличие и степень загрязнения химическими веществами различных сред. Одним из таких приборов является анализатор «Флюорат» и его модификации. Прибор позволяет осуществлять контроль загрязнения воздуха, питьевых и сточных вод, продуктов питания.
3. КОНТРОЛЬ ЗА СОДЕРЖАНИЕМ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ
3.1 Общие требования
3.1.1 Отбор проб должен проводиться в зоне дыхания при характерных производственных условиях.
3.1.2 Для каждого производственного участка должны быть определены вещества, которые могут выделяться в воздух рабочей зоны. При наличии в воздухе нескольких вредных веществ контроль воздушной среды допускается проводить по наиболее опасным и характерным веществам, устанавливаемым органами государственного санитарного надзора.
3.2 Требования к контролю за соблюдением максимально разовой ПДК
3.2.1 Контроль содержания вредных веществ в воздухе проводиться на наиболее характерных рабочих местах. При наличии идентичного оборудования или выполнении одинаковых операций контроль проводится выборочно на отдельных рабочих расположенных в центре и по периферии помещения.
3.2.2 Содержание вредного вещества в данной конкретной точке характеризуется следующим суммарным временем отбора: для токсических веществ - 15 мин, для веществ преимущественно фиброгенного действия - 30 мин. За указанный период времени может быть отобрана одна или несколько последовательных проб через равные промежутки времени. Результаты, полученные при однократном отборе или при усреднении последовательно отобранных проб, сравнивают с величинами ПДКмр.рз.
3.2.3 В течение смены и (или) на отдельных этапах технологического процесса в одной точке должно быть последовательно отобрано не менее трех проб. Для аэрозолей преимущественно фиброгенного действия допускается отбор одной пробы.
3.2.4 При возможном поступлении в воздух рабочей зоны вредных веществ с остронаправленным механизмом действия должен быть обеспечен непрерывный контроль с сигнализацией о превышении ПДК.
3.2.5 Периодичность контроля (за исключением веществ, указанных в 3.2.4) устанавливается в зависимости от класса опасности вредного вещества: для I класса - не реже 1 раза в 10 дней, II класса - не реже I раза в месяц, III и IV классов - не реже 1 раза в квартал.
В зависимости от конкретных условий производства периодичность контроля может быть изменена по согласованию с органами государственного санитарного надзора. При установленном соответствии содержания вредных веществ III, IV классов опасности уровню ПДК допускается проводить контроль не реже 1 раза в год,
3.3 Требования к контролю за соблюдением среднесменных ПДК
3.3.1 Среднесменные концентрации определяют для веществ, для которых установлен норматив - ПДКсс.рз. Измерение проводят приборами -индивидуального контроля либо по результатам отдельных измерений. В последнем случае ее рассчитывают как величину, средневзвешенную во времени, с учетом пребывания работающего на всех (в том числе и вне контакта с контролируемым веществом) стадиях и операциях технологического процесса. Обследование осуществляется на протяжении не менее чем 75 % продолжительности смены в течение не менее 3 смен. Расчет проводится по формуле
где Ксс - среднесменная концентрация, мг/м3;
К1, К2 ... Кп - средние арифметические величины отдельных измерений концентраций вредного вещества на отдельных стадиях (операциях) технологического процесса, мг/м3;
t1, t2 ... tn — продолжительность отдельных стадий (операций) технологического процесса, мин.
3.3.2 Периодичность контроля за соблюдением среднесменной ПДК должна быть не реже кратности проведения периодических медицинских осмотров.
4. Средства нормализации воздуха рабочей зоны.
Основные технические мероприятия и средства по поддержанию воздуха рабочей зоны в требуемых пределах включают следующее.
1. Выбор рациональных архитектурно-планировочных решений, позволяющих максимально снизить загрязнение воздушной среды (группировку зданий и сооружений в отдельные комплексы по функциональному назначению с учетом характера вредных выделений, господствующего направления ветра, изоляцию помещений с вредными технологическими процессами и т.п.).
2. Рациональная организация технологических процессов, исключающая операции, связанные с выделением в рабочие помещения влаги, вредных паров, газов, аэрозолей, а также поступление перегретого и холодного воздуха.
3. Широкое применение механизации и автоматизации производства, позволяющее исключать контакт работающих с вредными веществами.
4. Применение эффективных систем отопления, вентиляции и кондиционирования воздуха, обеспечивающих создание комфортных условий в рабочей зоне.
5. Применение современных механических средств уборки помещений (вакуумной пылеуборки с помощью стационарных и передвижных установок, гидроуборки и др.).
6. Применение дегазации помещений с помощью специальных средств на производствах, связанных с выделением вредных и токсичных газо- и парообразных веществ.
7. Очистка загрязненного воздуха в пылегазоулавливающих аппаратах при выбросе его в атмосферу и при подаче в помещении.
8. Использование средств индивидуальной защиты и принятие срочных мер по нормализации состава воздуха рабочей зоны при кратковременных работах в чрезвычайных условиях (аварийных ситуациях и т.п.) в случае невозможности уменьшить вредные выделения до допустимых уровней.
5.Очистка воздуха от газообразных примесей.
Очистку и обезвреживание газовых составляющих выбросов промышленных производств осуществляется методами, выбор которых определяется составом, концентрацией загрязняющих веществ, типом производства и условиями выброса.
Существует пять основных методов очистки воздуха от газообразных загрязнителей: абсорбция, адсорбция, конденсация, сжигание горючих загрязнителей и низкотемпературное католическое окисление.
Абсорбция представляет собой процесс химической технологии, включающей массоперенос между растворимым газообразным компонентом и жидким растворителем, осуществляемый в аппарате для контактирования газа с жидкостью. Абсорбционные системы разделяются на системы, в которых в качестве основной абсорбирующей жидкости используется вода и системы, в которых используются малолетучие органические примеси. В качестве абсорбционного оборудования применяют колонны, скрубберы и мокрые циклоны.
Адсорбцию применяют для улавливания большого числа различных газообразных загрязнений, когда необходимо снизить их содержание до очень низких, следовых концентраций. Под адсорбцией понимается явление, когда силы притяжения, существующие между атомами, молекулами и ионами в твердом состоянии, позволяют частичками, находящимся на поверхности, притягивать и удерживать другие вещества-газы и жидкости. Твердые вещества с развитой ультрамикроскопической структурой, способные выборочно извлекать отдельные компоненты из газовой смеси называются адсорбентом или сорбентом, а адсорбируемый материал – адсорбатом или сорбатом.