Смекни!
smekni.com

Методические указания к лабораторным работам Ростов-на-Дону (стр. 1 из 11)

Федеральное агентство по образованию

Донской государственный технический университет

Химия

Методические указания к лабораторным работам

Ростов-на-Дону

2009

УДК 54

А.В.Хохлов. Химия. Методические указания к лабораторным работам.

Ростов н/Д, Издательский центр ДГТУ. 2009. 15 с.

Методические указания для студентов специальностей 280202, 280102, 260100, 150206, 150501, 150204, 150202.

Печатается по решению редакционно-издательского совета

Факультета НиКМ

Научный редактор д.т.н., профессор А.С.Кужаров

© Донской государственный технический университет, 2009

Лабораторная работа № 1

Свойства основных классов неорганических соединений

Опыт 1. Взаимодействие основных оксидов с водой.

В пробирку насыпьте немного оксида кальция CaO и добавьте 1 мл воды. Содержимое пробирки хорошо перемешайте и прибавьте 2-3 капли раствора фенолфталеина. Как изменится цвет индикатора и почему?

Опыт 2. Взаимодействие основных оксидов с кислотами.

В пробирку насыпьте немного оксида кальция (около 0,1 г) и добавьте 1 мл раствора соляной кислоты HCl. Что наблюдаете? Напишите уравнения реакций в молекулярной и ионной формах.

Опыт 3. Взаимодействие амфотерных оксидов со щелочами и кислотами.

В две пробирки насыпьте небольшое количество (около 0,1 г) оксида цинка ZnO. В первую прилейте 2-3 мл раствора соляной кислоты, во вторую 2-3 мл раствора гидроксида натрия. Что происходит? Проверьте растворимость оксида цинка в воде. Составьте уравнения всех процессов.

Опыт 4. Взаимодействие оснований с кислотами (реакция нейтрализации).

В пробирку налейте 1-2 мл раствора гидроксида натрия NaOH, добавьте 1-2 капли раствора фенолфталеина и медленно, по каплям, прибавьте 1-2 мл соляной кислоты HCl до изменения окраски индикатора. Что происходит? Напишите уравнения реакций в молекулярной и ионной формах.

Опыт 5. Исследование амфотерности гидроксидов цинка и

хрома (III).

Возьмите 2 пробирки. Налейте в первую пробирку 1 мл раствора сульфата цинка ZnSO4, во вторую - 1мл раствора сульфата хрома(III) Cr2(SO4)3. В каждую пробирку прибавьте по каплям раствор гидроксида натрия до образования осадков. Какого цвета осадки? Напишите уравнения реакций в молекулярной и ионной формах. Перемешайте осадки легким встряхиванием и каждый осадок разделите на 2 пробирки. К одной части осадков добавьте раствор соляной кислоты, а к другой - раствор гидроксида натрия (в избытке). Что наблюдаете? Напишите уравнения всех реакций в молекулярной и ионной формах.

Опыт 6. Получение нерастворимых оснований.

Налейте в пробирку 1 мл раствора хлорида железа(III) FeCI3. Добавьте 1 мл раствора гидроксида натрия. Что образуется? Составьте уравнения реакций в молекулярной и ионной формах.

Опыт 7. Взаимодействие кислот с солями.

К 1-2 мл раствора нитрата свинца(II) Pb(NO3)2 прилейте 1-2 мл раствора соляной кислоты. Что происходит? Напишите уравнения реакций в молекулярной и ионной формах.

Опыт 8. Взаимодействия кислот с металлами

Налейте в две пробирки по 1-2 мл разбавленной серной кислоты. В первую пробирку добавьте гранулу металлического цинка, а во вторую - кусочек металлической меди. Что наблюдаете? Составьте уравнения реакций.

Опыт 9. Получение солей из амфотерных гидроксидов.

Даны растворы солей: FeCI2, BaCI2, CuSO4, ZnSO4, NaCI, AI (NO3)3. Какие из этих солей могут служить исходными веществами для получения амфотерных гидроксидов? Отберите подходящие для этой цели растворы солей, налейте в пробирки по 5 мл и добавьте в каждую малыми порциями раствор щелочи до выпадения осадка. Выпавшие осадки разделите в разные пробирки на две части. В первую часть добавьте избыток щелочи, во вторую - немного раствора соляной или серной кислоты до растворения осадка. Объясните происходящие процессы. Составьте уравнения реакций.

Лабораторная работа № 2

Определение молярной массы эквивалента металла

Для экспериментального определения молярной массы эквивалента металла используют прибор, состоящий из бюретки, соединенной с воронкой резиновой трубкой. Через систему пробок и трубок к бюретке присоединяют пробирку. Система укрепляется на штативе и заливается подкрашенной водой. Следует помнить, что водород - очень летучий газ. Поэтому необходимо проверить герметичность установки, для чего при закрытых пробках и присоединенной пробирке надо опустить кольцо с воронкой. Если прибор герметичен, то уровень воды в бюретке, немного понизившись, останется постоянным. Если уровни жидкости в бюретке и воронке, как в сообщающихся сосудах, выравниваются, то герметичность нарушена, и следует обратиться к преподавателю. В пробирку налейте 3-4 мл раствора серной кислоты (разбавление 1:4). Полоской фильтровальной бумаги снимите со стенок пробирки капли кислоты. Удерживая пробирку наклонно (следить, чтобы не выливалась кислота), поместите на сухую стенку пробирки кусочек металла, взвешенный с точностью до 0,0001 г. (Необходимо следить, чтобы металл не соприкасался с кислотой). Присоедините пробирку к прибору, удерживая ее в наклонном положении. Отметьте уровень воды в бюретке /V1 с точностью до 0,1 мл. Придерживая пробирку, стряхните металл в раствор кислоты.

Выделяющийся водород будет собираться в бюретке. При этом вода из бюретки будет собираться в воронке. По окончании реакции дайте системе остыть и опустите кольцо с воронкой до нового уровня жидкости. Отметьте новый уровень жидкости V2. Разность уровней жидкости в бюретке после опыта и до опыта равна объему выделившегося водорода.

VH2 = V2 - V1.

Отметьте условия проведения опыта: давление (р) и температуру (Т).

По табл. 2.1 определите давление насыщенного водяного пара (h) при температуре проведения опыта. Экспериментальные данные внесите в табл. 2.2.

Таблица 1

Давление насыщенного пара /h/, мм. рт. ст.

T°С

h, мм рт.ст.

T°С

h, мм рт.ст.

16

13,63

21

18,65

17

14,43

22

19,83

18

15,48

23

21,07

19

16,48

24

22,38

20

17,54

25

23,76

Таблица 2

Экспериментальные наблюдения.

Масса

Метал-ла

m, г

р,

мм рт.ст.

t, °C

Влажность h, мм рт.ст.

Уровень жидкости до опыта V1, мл

Уровень жидкости после опыта

V,

мл

Объем выделившегося водорода VH2, мл

Для определения молярной массы эквивалента металла следует привести полученный объем водорода VH2 к нормальным условиям VH2°, используя уравнение объединенного газового закона:

p° VH2°/T° = (p – h) VH2.

Отсюда находят

VH2° = (p – h) VH2 T°/ p°T

И наконец, используя закон эквивалентов, получают:

ЭМ = m ×11200 / VH2°.

Вычислите атомную массу металла, если валентность его равна 2.

Определите по таблице Д.И.Менделеева металл.

Вычислите теоретическое значение молярной массы эквивалента металла.

w,% = ôЭт - Ээô/ Эт,

где Эт – рассчитанная эквивалента металла;

Ээ - экспериментальная молярная масса эквивалента металла.

Лабораторная работа № 3

Химическая кинетика и равновесие

Опыт 1. Зависимость скорости реакции от концентрации

реагирующих веществ.

Эту зависимость изучают на примере реакции:

Na2S2O3 + H2SO4 = H2S2O3 + Na2SO4;

H2S2O3 = SO2­ + S¯ + H2O,

которая идёт с образованием нерастворимой в воде мелкодисперсной серы

(коллоидный раствор), вызывающей опалесценцию раствора (светорассеяние). По времени появления опалесценции можно судить о скорости химической реакции.

В 4 стаканчика налейте разбавленный раствор Na2S2O3 : в первый – 5 мл, во второй – 10 мл, в третий – 15 мл и в четвёртый – 20 мл; затем добавьте в 1-й стаканчик 15 мл дистиллированной воды, во 2-й – 10 мл, в 3-й – 5 мл воды. В четыре пробирки отмерьте цилиндром по 5 мл разбавленной серной кислоты.

В четыре стаканчика с растворами тиосульфата вылейте из четырёх пробирок раствор серной кислоты. После сливания заметьте время появления опалесценции и внесите в табл. 5.1.

Таблица 4

№ стакана

Объем

Na2S2O3, мл

Объем

H2O, мл

Объем

H2SO4, мл

Время появления опалесценции

в сек

1

5

15

5

2

10

10

5

3

15

5

5

4

20

0

5

Начертите график зависимости скорости данной реакции от концентрации тиосульфата натрия. На оси абсцисс нанесите в определённом масштабе концентрации тиосульфата в мл, на оси ординат – величины, обратные времени появления опалесценции, где t – время в сек.