Смекни!
smekni.com

Тема 24. Преобразование гильберта-хуанга судьба новой истины такова: в начале своего существования она всегда кажется ересью (стр. 2 из 4)

Симметрия огибающих сигнала имеет существенное значение и ее нарушение, например, в случае наличия в сигнале постоянной составляющей или тренда, существенно изменяет результаты преобразования.

Рис. 24.1.5. Преобразование Гильберта сигнала с трендом.

На рис. 24.1.5 приведен сигнал, представленный монотонной гармоникой с амплитудой a=1 в сумме с трендом b(t), значения которого изменяются линейно от нуля до 1.2 в интервале 200 < t < 1000.

При отсутствии тренда (0<t<200) значения мгновенной амплитуды и частоты соответствуют амплитуде и частоте гармоники. При появлении в сигнале тренда и его значениях b(t)<a в значениях мгновенной амплитуды появляются пульсации, синхронные с гармоникой сигнала, полный размах которых (от максимума до минимума) нарастает пропорционально b(t)/(2a), и становится практически постоянным порядка 2а при b(t)>a.

Отношение a = b(t)/a в интервале 0≤a≤1 в первом приближении может считаться коэффициентом локальной асимметрии формы сигнала относительно временной оси. Асимметрия формы сигнала существенно влияет на вычисления мгновенных частот, что наглядно видно на частотно-временном графике рис. 24.1.5 в интервале 200<t<867. В интервалах минимумов мгновенных амплитуд появляются частотные пики максимумов, амплитуда которых пропорциональна a. При a>1 колебания становятся стоячими и частотные пики меняют знак, уходя в область отрицательных частот, а, следовательно, мгновенные частоты в этом случае вообще не имеют смысла.

Таким образом, можно констатировать, что для простых гармонических сигналов физически значимая мгновенная частота может быть определена только для функций локально симметричных относительно нулевого среднего уровня. Аналогичное заключение может быть распространено и на многокомпонентные сигналы, при условии, что каждый из таких сигналов симметричен относительно нулевого уровня.

В принципе, любой произвольный сигнал можно рассматривать в виде суммы колебательных процессов, удовлетворяющих условию симметричности и наложенных на тренд произвольной формы. В этом случае правомочна и обратная задача разложения произвольного сигнала на эти составляющие компоненты и остаточный тренд. Метод решения этой задачи был предложен Н.Хуангом и получил название эмпирической модовой декомпозиции (EMD) сигналов.

24.2. МЕТОД ЭМПИРИЧЕСКОЙ МОДОВОЙ ДЕКОМПОЗИЦИИ СИГНАЛОВ /1,2,3/

EMD (Empirical Mode Decomposition) - метод разложения сигналов на функции, которые получили название внутренних или «эмпирических мод». Метод представляет собой адаптивную итерационную вычислительную процедуру разложения исходных данных (непрерывных или дискретных сигналов) на эмпирические моды или внутренние колебания.

Огибающие сигналов. У каждого сигнала имеются локальные экстремумы: чередующиеся локальные максимумы и локальные минимумы с произвольным расположением по координатам (независимым переменным) сигналов. По этим экстремумам с использованием методов аппроксимации можно построить две огибающие сигналов: нижнюю - построенную по точкам локальных минимумов, и верхнюю - построенную по точкам локальных максимумов, а также функцию «среднего значения огибающих», которой отвечает срединная линия, расположенная в точности между нижней и верхней огибающими.

Функции внутренних мод сигналов. Модовая декомпозиция сигналов основана на предположении, что любые данные состоят из различных внутренних колебаний (intrinsic mode functions, IMF). В любой момент времени данные могут иметь множество сосуществующих внутренних колебаний - IMFs. Каждое колебание, линейное или нелинейное, представляет собой модовую функцию, которая имеет экстремумы и нулевые пересечения. Кроме того, колебания в определенной степени «симметричны» относительно локального среднего значения. Конечные сложные данные образуются суммой модовых функций, наложенных на региональный тренд сигнала.

Эмпирическая мода - это такая функция, которая обладает следующими свойствами:

1. Количество экстремумов функции (максимумов и минимумов) и количество пересечений нуля не должны отличаться более чем на единицу.

2. В любой точке функции среднее значение огибающих, определенных локальными максимумами и локальными минимумами, должно быть нулевым.

IMF представляет собой колебательный режим, но вместо постоянной амплитуды и частоты, как в простой гармонике, у IMF могут быть переменная амплитуда и частота, как функции независимой переменной (времени, координаты, и пр.). Первое свойство гарантирует, что локальные максимумы функции всегда положительны, локальные минимумы соответственно отрицательны, а между ними всегда имеют место пересечения нулевой линии. Второе свойство гарантирует, что мгновенные частоты функции не будут иметь нежелательных флуктуаций, являющихся результатом асимметричной формы волны.

Любую функцию и любой произвольный сигнал, изначально содержащие произвольную последовательность локальных экстремумов (минимум 2), можно разделить на семейство функций IMFs и остаточный тренд. Если данные лишены экстремумов, но содержат точки перегиба («скрытые» экстремумы наложения модовых функций и крутых трендов), то для открытия экстремумов может использоваться дифференцирование сигнала.

Допустим, что имеется произвольный сигнал y(t). Сущность метода EMD заключается в последовательном вычислении функций эмпирических мод cj(t) и остатков rj(t) = rj-1(t) - cj(t), где j = 1, 2, 3, …, n при r0 = y(t). Результатом разложения будет представление сигнала в виде суммы модовых функций и конечного остатка:

x(t) =

cj(t) + rn(t),

где n — количество эмпирических мод, которое устанавливается в ходе вычислений.

Для наглядности методику реализации EMD рассмотрим на примере разложения цифрового массива модельного сигнала y(k), представленного на рис. 24.2.1. Сигнал смоделирован суммой трех нестационарных по амплитуде гармоник различной частоты на интервале отсчетов по k от 0 до 200, и продлен на начальном и конечном участках на интервалы tp=4 для задания начальных и конечных условий преобразования и устранения ошибок преобразования на концевых интервалах обрабатываемого массива данных.

Рис. 24.2.1.

Процесс отсеивания функций IMF. Алгоритм эмпирической декомпозиции сигнала складывается из следующих операций его преобразования.

Рис. 24.2.2.

Операция 1. Находим в сигнале y(k) положение всех локальных экстремумов, максимумов и минимумов процесса (номера точек ki.ext экстремумов), и значения y(ki.ext) в этих точках (рис. 24.2.2). Между этими экстремумами сосредоточена вся информация сигнала. Группируем раздельно для максимумов и для минимумов массивы координат ki.ext и соответствующих им амплитудных значений у(ki.ext). Число строк в массивах максимумов и минимумов не должно отличаться более чем на 1.

Рис. 24.2.3.

Операция 2. Кубическим сплайном (или каким либо другим методом) вычисляем верхнюю ut(k) и нижнюю ub(k) огибающие процесса соответственно, по максимумам и минимумам, как это показано на рис. 24.2.3 (красный и синий цвет). Определяем функцию средних значений m1(k) между огибающими (черный цвет).

m1(k) = (ut(k)+ub(k))/2.

Разность между сигналом y(k) и функцией m1(k) дает нам первую компоненту отсеивания (Sifting) – функцию h1(k), которая является первым приближением к первой функции IMF:

h1(k) = y(k) – m1(k). (24.2.1)

Операция 3. Повторяем операции 1 и 2, принимая вместо y(k) функцию h1(k), и находим второе приближение к первой функции IMF – функцию h2(k).

h2(k) = h1(k) – m2(k).

Последующие итерации выполняются аналогично. Алгоритм итераций нахождения первой функции IMF:

hi(k) = hi-1(k) – mi(k), (24.2.2)

По мере увеличения количества итераций функция mi(k) стремится к нулевому значению, а функция hi(k) - к неизменяемой форме. С учетом этого, естественным критерием останова итераций является задание определенного предела по нормализованной квадратичной разности между двумя последовательными операциями приближения, определяемой как

d = Sk [|hi-1(k) - hi(k)|2 /hi-12(k)]. (24.2.3)

Рис. 24.2.4.

Как правило, для выполнения качественного отсеивания модовых функций достаточно 6-8 итераций. Слишком строгий критерий останова может завышать количество IMF и создавать компоненты, не несущие какой-либо полезной информации. С другой стороны, при слабом критерии возможно отсеивание IMF, не полностью удовлетворяющих свойствам модовых функций, что может приводить к появлению в этих IMF отрицательных мгновенных частот.