Смекни!
smekni.com

Нейронные сети (стр. 1 из 4)

Міністерство освіти і науки України

Запорозький національний технічний університет

Кафедра КСМ

РЕФЕРАТ

Тема: НЕЙРОННЫЕ СЕТИ

Виконав: студент групи ІОТ-526 Д.С.Барсуков

Перевірив: В.О. Рибін

Запоріжжя

2008
СОДЕРЖАНИЕ

Введение. 3

Аппаратная реализация нейронных сетей. 5

Нейрочипы: анализ и сравнительные характеристики. 11

Источники информации. 17


Введение

Параллели из биологии

Нейронные сети возникли из исследований в области искусственного интеллекта, а именно, из попыток воспроизвести способность биологических нервных систем обучаться и исправлять ошибки, моделируя низкоуровневую структуру мозга (Patterson, 1996). Основной областью исследований по искусственному интеллекту в 60-е - 80-е годы были экспертные системы. Такие системы основывались на высокоуровневом моделировании процесса мышления (в частности, на представлении, что процесс нашего мышления построен на манипуляциях с символами). Скоро стало ясно, что подобные системы, хотя и могут принести пользу в некоторых областях, не ухватывают некоторые ключевые аспекты человеческого интеллекта. Согласно одной из точек зрения, причина этого состоит в том, что они не в состоянии воспроизвести структуру мозга. Чтобы создать искусственных интеллект, необходимо построить систему с похожей архитектурой.

Мозг состоит из очень большого числа (приблизительно 10,000,000,000) нейронов, соединенных многочисленными связями (в среднем несколько тысяч связей на один нейрон, однако это число может сильно колебаться). Нейроны - это специальная клетки, способные распространять электрохимические сигналы. Нейрон имеет разветвленную структуру ввода информации (дендриты), ядро и разветвляющийся выход (аксон). Аксоны клетки соединяются с дендритами других клеток с помощью синапсов. При активации нейрон посылает электрохимический сигнал по своему аксону. Через синапсы этот сигнал достигает других нейронов, которые могут в свою очередь активироваться. Нейрон активируется тогда, когда суммарный уровень сигналов, пришедших в его ядро из дендритов, превысит определенный уровень (порог активации).

.Интенсивность сигнала, получаемого нейроном (а следовательно и возможность его активации), сильно зависит от активности синапсов. Каждый синапс имеет протяженность, и специальные химические вещества передают сигнал вдоль него. Один из самых авторитетных исследователей нейросистем, Дональд Хебб, высказал постулат, что обучение заключается в первую очередь в изменениях "силы" синаптических связей. Например, в классическом опыте Павлова, каждый раз непосредственно перед кормлением собаки звонил колокольчик, и собака быстро научилась связывать звонок колокольчика с пищей. Синаптические связи между участками коры головного мозга, ответственными за слух, и слюнными железами усилились, и при возбуждении коры звуком колокольчика у собаки начиналось слюноотделение.

Таким образом, будучи построен из очень большого числа совсем простых элементов (каждый из которых берет взвешенную сумму входных сигналов и в случае, если суммарный вход превышает определенный уровень, передает дальше двоичный сигнал), мозг способен решать чрезвычайно сложные задачи. Разумеется, мы не затронули здесь многих сложных аспектов устройства мозга, однако интересно то, что искусственные нейронные сети способны достичь замечательных результатов, используя модель, которая ненамного сложнее, чем описанная выше.

Базовая искусственная модель

Чтобы отразить суть биологических нейронных систем, определение искусственного нейрона дается следующим образом:

  • Он получает входные сигналы (исходные данные либо выходные сигналы других нейронов нейронной сети) через несколько входных каналов. Каждый входной сигнал проходит через соединение, имеющее определенную интенсивность (или вес); этот вес соответствует синаптической активности биологического нейрона. С каждым нейроном связано определенное пороговое значение. Вычисляется взвешенная сумма входов, из нее вычитается пороговое значение и в результате получается величина активации нейрона (она также называется пост-синаптическим потенциалом нейрона - PSP).
  • Сигнал активации преобразуется с помощью функции активации (или передаточной функции) и в результате получается выходной сигнал нейрона.

.Если при этом использовать ступенчатую функцию активации (т.е., выход нейрона равен нулю, если вход отрицательный, и единице, если вход нулевой или положительный), то такой нейрон будет работать точно так же, как описанный выше естественный нейрон (вычесть пороговое значение из взвешенной суммы и сравнить результат с нулем - это то же самое, что сравнить взвешенную сумму с пороговым значением). В действительности, как мы скоро увидим, пороговые функции редко используются в искусственных нейронных сетях. Учтите, что веса могут быть отрицательными, - это значит, что синапс оказывает на нейрон не возбуждающее, а тормозящее воздействие (в мозге присутствуют тормозящие нейроны).

Это было описание отдельного нейрона. Теперь возникает вопрос: как соединять нейроны друг с другом? Если сеть предполагается для чего-то использовать, то у нее должны быть входы (принимающие значения интересующих нас переменных из внешнего мира) и выходы (прогнозы или управляющие сигналы). Входы и выходы соответствуют сенсорным и двигательным нервам - например, соответственно, идущим от глаз и в руки. Кроме этого, однако, в сети может быть еще много промежуточных (скрытых) нейронов, выполняющих внутренние функции. Входные, скрытые и выходные нейроны должны быть связаны между собой.

Ключевой вопрос здесь - обратная связь (Haykin, 1994). Простейшая сеть имеет структуру прямой передачи сигнала: Сигналы проходят от входов через скрытые элементы и в конце концов приходят на выходные элементы. Такая структура имеет устойчивое поведение. Если же сеть рекуррентная (т.е. содержит связи, ведущие назад от более дальних к более ближним нейронам), то она может быть неустойчива и иметь очень сложную динамику поведения. Рекуррентные сети представляют большой интерес для исследователей в области нейронных сетей, однако при решении практических задач, по крайней мере до сих пор, наиболее полезными оказались структуры прямой передачи, и именно такой тип нейронных сетей моделируется в пакете ST Neural Networks.

.Типичный пример сети с прямой передачей сигнала показан на рисунке. Нейроны регулярным образом организованы в слои. Входной слой служит просто для ввода значений входных переменных. Каждый из скрытых и выходных нейронов соединен со всеми элементами предыдущего слоя. Можно было бы рассматривать сети, в которых нейроны связаны только с некоторыми из нейронов предыдущего слоя; однако, для большинства приложений сети с полной системой связей предпочтительнее.

При работе (использовании) сети во входные элементы подаются значения входных переменных, затем последовательно отрабатывают нейроны промежуточных и выходного слоев. Каждый из них вычисляет свое значение активации, беря взвешенную сумму выходов элементов предыдущего слоя и вычитая из нее пороговое значение. Затем значение активации преобразуются с помощью функции активации, и в результате получается выход нейрона. После того, как вся сеть отработает, выходные значения элементов выходного слоя принимаются за выход всей сети в целом.

Аппаратная реализация нейронных сетей

В настоящее время решение основной части практических задач с помощью ИНС обеспечивается использованием коммерческого программного обеспечения на основе методов нейрологики, исполнение которых, что естественно, происходит с помощью центрального процессора. Это вполне логично, главным образом из-за того, что это относительно новая область, а создание ПО — достаточно гибкий процесс, что позволяет тестировать и внедрять с малыми затратами некоторые экспериментальные методы. Однако специализированные аппаратные средства (которые могут обеспечить поддержку или замену определенных программных пакетов) предлагают заметные преимущества в определенных ситуациях. Рассмотрим глубже достоинства аппаратной реализации ИНС перед программным исполнением. К наиболее важным причинам следует отнести:

Скорость. Скорость исполнения большинства приложений может быть увеличена благодаря возможности проведения параллельных вычислений (особенно в задачах, требующих проведения повторных, итеративных вычислений). Благодаря чему снижается нагрузка на центральный процессор (если устройство работает в составе системы), а, соответственно, повышается скорость исполнения других приложений.

Стоимость. Применение устройств на основе ИНС может снизить общую стоимость системы. Как мы уже отметили выше, рассматриваемые аппаратные средства менее чувствительны к мощности ЦП, сохраняя при этом высокие показатели скорости. Этот фактор особенно важен в случае обновления или инсталляции новой крупной системы.

Надежность. По схожим причинам аппаратная реализация может обеспечить более высокую надежность функционирования системы, в смысле меньшей вероятности отказа оборудования.

Специальные эксплуатационные режимы. В ряде применений, налагающих ограничения на размеры, вес и другие физические характеристики, этот фактор может стать решающим.

Безопасность. В плане защиты авторских прав, сопротивления взлому и другим противоправным действиям, применение аппаратной реализации позволяет обеспечить лучшую защиту по сравнению с эквивалентными функциями ПО на основе ИНС.

Типы аппаратного обеспечения на основе ИНС

Существует большое количество типов рассматриваемых устройств, однако их можно разделить на три основных класса, которые могут применяться в зависимости от поставленных и выполняемых задач.