Смекни!
smekni.com

Нейронные сети (стр. 2 из 4)

Нейрокомпьютеры (Neurocomputer). Представители шестого поколения ПК представляют собой комплексную систему, аппаратные составляющие которой полностью основаны на ИНС. Создание таких систем обосновано при необходимости выполнения обработки информации, требующей высоких вычислительных мощностей.

Разного типа ускорители и другие карты расширения для ПК (PC accelerators). Такие устройства представляют собой стандартные карты расширения для шины, например, ISA или PCI, с тем лишь отличием, что обработку данных осуществляет ИНС. Такие устройства обладают некоторыми преимуществами нейрокомпьютеров, но в более узком или специализированном диапазоне выполняемых задач, а, соответственно, и низком ценовом диапазоне.

Чипы (Chips). Тип аппаратной реализации ИНС, применяемый для построения вышеназванных форм реализации, а также предназначенный для совместного использования с другими стандартными устройствами для расширения свойств последних.

Клеточные библиотеки (Cell libraries). Такой тип предназначен для обеспечения совместной работы специализированного чипа и некоторых дополнительных возможностей и функций, предоставляемых другими устройствами. Широко применяется при построении сложных комплексных систем.

Встроенные микрокомпьютеры (Embedded microcomputers). Такие устройства способны выполнять определенный круг задач с помощью ИНС, но без участия периферийных устройств (клавиатуры, монитора и т. д.).

Некоторые ускорители могут содержать обычные перепрограммируемые процессоры, повышение производительности которых обеспечивается распараллеливанием вычислительных повторяющихся операций с помощью ИНС. Отметим, что далее сконцентрируемся на устройствах, в которых функциональные возможности самой ИНС непосредственно осуществлены в аппаратном обеспечении.

Категории аппаратного обеспечения ИНС

Прежде чем перейти рассмотрению наиболее интересных нейрочипов остановимся на их классификации.

По типу логики их можно разделить на цифровые, аналоговые и гибридные.

По типу реализации нейроалгоритмов: с полностью аппаратной реализаций и с программно-аппаратной реализацией (когда нейроалгоритмы хранятся в ПЗУ).

По характеру реализации нелинейных преобразований: на нейрочипы с жесткой структурой нейронов (аппаратно реализованных) и нейрочипы с настраиваемой структурой нейронов (перепрограммируемые).

По возможностям построения нейросетей: нейрочипы с жесткой и переменной нейросетевой структурой (т.е. нейрочипы в которых топология нейросетей реализована жестко или гибко).

Процессорные матрицы (систолические процессоры) - это чипы, обычно близкие к обычным RISC процессорам и объединяющее в своем составе некоторое число процессорных элементов, вся же остальная логика, как правило, должна быть реализована на базе периферийных схем.

В отдельный класс следует выделить так называемые нейросигнальные процессоры, ядро которых представляет собой типовой сигнальный процессор, а реализованная на кристалле дополнительная логика обеспечивает выполнение нейросетевых операций (например, дополнительный векторный процессор и т.п.).

Обобщенная классификация нейрочипов приведена на рис.

Рассмотрим вопрос, связанный с практическим исполнением и внедрением ИНС в аппаратные средства. В этом случае, опять же, можно выделить три широких класса: цифровое, аналоговое и гибридное исполнения. В рамках этих категорий используется различная архитектура и методы для реализации необходимых функций.

Цифровое исполнение

В цифровом исполнении все значения, обрабатываемые нейронной сетью, представлены бинарными словами с характерной длиной слова. К преимуществам цифровой технологии перед аналоговой следует отнести независимость от электромагнитных помех, возможность использования RAM для хранения весовых коэффициентов (в течение неопределенного отрезка времени), хорошо отработанные технологии изготовления, высокая точность в вычислительных операциях, а также легкая интегрируемость в уже существующие системы. Однако в этом случае, как и везде, присутствуют недостатки, среди которых следует отметить более медленные (хотя и более точные) вычисления, а также проблемы, связанные с конвертацией аналогового сигнала.

В случае цифрового исполнения аппаратное обеспечение на основе ИНС может быть реализовано несколькими типами архитектур, наиболее важные из них мы рассмотрим и приведем соответствующие примеры.

Каскадируемая архитектура. Рассматриваемая архитектура практически идентична методам построения обычных цифровых процессоров, другими словами, нейронная сеть любого размера и архитектуры строится посредством стандартных блоков. Реализованными примерами такой архитектуры могут служить чип Philips Lneuro, MD1220 от Micro Devices, а также Neuralogix NLX-420 Neural Processor.

Мультипроцессорные чипы. В этом случае подход состоит в размещении в одном чипе множества простейших процессоров. Такие решения могут быть разделены на две группы, известные как SIMD (Single Instruction, Multiple Data) и так называемые систолические сети. В случае SIMD, все процессоры выполняют одну и ту же инструкцию параллельно с вектором данных. Во втором случае каждый процессор неоднократно исполняет один шаг вычислений перед передачей результата следующему (или нескольким) процессору в сети. Примерами SIMD-архитектуры являются чип Inova N64000, содержащий 64 элемента обработки, чип HNC 100NAP, включающий в себя 4 обрабатывающих элемента, Siemens внедрила в свой мультипроцессор MA 16 микрочипов. Такая архитектура предназначена, главным образом, для исполнения различных действий над матрицами.

Архитектура RBF (Radial Basis Function). Согласно этой архитектуре, функционирование сети определяется управлением эталонными векторами, определяющими области, на которые влияют данные при обучении. Преимуществом RBF ИНС является их быстрое обучение и относительно простое построение сетей прямого распространения. К коммерческим изделиям относятся чипы IBM ZICS и Nestor Ni1000. Интересным фактом является также и то, что произведенные в США чипы семейства IBM ZICS были разработаны в Европе.

Другие цифровые проекты. Ряд существующих архитектур не подходят ни под одну из вышеназванных категорий. К примеру, разработка фирмы Micro Circuit Engineering MT19003 NISP, — по существу, RISC-процессор (Redu-ced Instruction Set Computer, тип архитектуры микропроцессора, ориентированный на быстрое и эффективное выполнение относительно небольшого набора встроенных команд), осуществляющий семь инструкций, оптимизированных для построения многослойных сетей. Еще одним примером, реализующим другой подход, может служить чип Hitachi Wafer Scale Integration. Чипы этого семейства предназначены для реализации сетей обратного распространения и сетей Хопфилда.

Аналоговое исполнение

К преимуществам этой категории аппаратных средств реализации ИНС следует отнести высокие скорости обработки информации и возможности высокой плотности расположения элементов. Однако тут же дают о себе знать и недостатки — сложность в получении высокой точности, обусловленная различиями в компонентах из-за системы допусков при производстве, различные характеры тепловых и электромагнитных помех, искажающих полезный сигнал. Еще одной проблемой является сложность в долгосрочном хранении весовых коэффициентов и организации операций аналогового умножения.

В качестве примера можно привести разработку Intel — 8017NW ETANN (Electrically Trainable Analogue Neural Networks), содержащий 64 нейрона и 10280 весовых коэффициентов. ИНС, реализованная в продукте Synaptics Silicon Retina, обрабатывает изображение, моделируя процессы, происходящие в сетчатке глаза. Подход заключается в создании аналогового исполнения, где ИНС пытается наиболее точно воспроизвести поведение биологических нейронов. Реализованные аналоговые нейросети представляют набор компонентов, размеры которых меньше размеров биологического нейрона, и предполагается, что вышеназванные недостатки компенсируются взаимосвязями между аналоговыми нейронами.

Гибридное исполнение

Как понятно из названия, эта категория представляет собой комплекс вышерассмотренных систем. Разработчики таких проектов пытаются получить от таких систем преимущества аналогового и цифрового исполнений. По большей части это достигается путем связи между устройствами и датчиками посредством цифровой составляющей, а обработка полностью или частично реализуется аналоговыми методами.

В качестве примера приведем чип Bellcore CLNN-32, который хранит весовые коэффициенты в цифровой форме, а производит моделирование ИНС, используя аналоговую схему. Существуют проекты, в которых весовые коэффициенты хранятся в конденсаторах, периодически подзаряжающихся от внутренних источников тока. Также примерами гибридных систем могут служить SU3232 Synapse и NU32 Neuron, разработанные в лабораториях Neural Semiconductor, и RN-100, представленный Ricoh.

Пути развития

В дальнейшем развитие аппаратных средств на основе ИНС может пойти следующими путями:

  1. Путем усовершенствования методов для реализации нейросетевых методов на FPGA (Field Programmable Gate Array, ПЛИС, Программируемая Логическая Интегральная Схема), VLSI (Very Large Scale Integration, СБИС, уровень интеграции, при котором количество элементов на одной микросхеме исчисляется тысячами и миллионами).
  2. Благодаря исследованиям и внедрению инновационных алгоритмов построения ИНС, которые осуществимы аппаратными средствами.
  3. Разработкой промышленного стандарта нейросетевых алгоритмов высокого уровня в промышленности.

Первые два пункта более-менее понятны, поясним, что подразумевается в последнем. Разработанные методы должны легко адаптироваться к нуждам промышленности, достаточно просто реализовываться. Но для этого необходимо специализированное ПО с полным набором нейросетевых функций (для цифрового, аналогового и гибридного исполнений). Немаловажно и исследование методов внедрения ИНС в уже существующие системы, создания на их основе гетерогенных систем. Вообще говоря, цепь обработки информации может начинаться с аналоговых датчиков и заканчиваться аналоговыми исполнительными устройствами, или система может быть полностью цифровой, в любом случае необходима оптимизация на уровне системы, а не отдельных ее составляющих.