Рассмотрим пространство
. Согласно в его определение включено условие . Мы вводим ещё одно важное предположение о совместности следов в узлах СЭ, а именно: считаем выполненным условие .Считаем также, что все углы СЭ направлены во внешность их области:
. Пространство , дополненное условием совместности следов , и условием на раствор углов, обозначим .Утверждение 2 . Приближенное решение МКСЭ из пространства
принадлежит соболевскому пространству в пределах каждого СЭ . То же верно для интерполянта .Доказательство. Предыдущие выкладки показывают, что
в области СЭ , если . Нерегулярный случай при минимальном значении из множества дает . Значит, выполнено . Аналогично для . Заметим, что для дальнейших выкладок это не принципиально, но упрощает некоторые записи. #3.2. Асимптотическое разложение функции класса HR(Λ)
Приведем некоторые известные сведения об асимптотическом разложении некоторой функции в многоугольном СЭ. Совместно с пунктом 0 эта информация может быть употреблена для получения ряда оценок. Кроме того, она дает представление и о других возможных вариантах задания граничных базисных функций, не указанных ранее и характеризуемых любой гладкостью по шкале Соболева. Как мы уже отмечали, показатель гладкости такой функции в СЭ всегда ограничен сверху. Это связано с гладкостью
его границы. Получим асимптотическое разложение в окрестностях угловых точек.Произвольное решение уравнения Лапласа с граничными данными
в угле Λ СЭ (в некоторой окрестности угловой точки P) разложимо в сумму гладкой и сингулярной частей [24; 25; 35]: , , ,где
обладает максимальной гладкостью, порожденной гладкостью функции граничного условия, а наличие обусловлено видом области Λ. Здесь – локальная система координат в угле Λ; набор параметров λ определен некоторыми характеристическими числами, связанными с уравнением, и может быть дополнен конечным числом положительных действительных параметров , ; причем и в том, и в другом случае диапазон λ ограничен сверху гладкостью граничных данных; Q – конечное число; – константы. Рассматриваемое нами эллиптическое уравнение не содержит членов порядка меньше максимального. Кроме того, границы СЭ в некоторой окрестности каждого из углов Λ считаем прямыми линиями.Классическим способом определения регулярности решения линейного эллиптического уравнения с постоянными коэффициентами является метод В.А. Кондратьева(*), использующий преобразование Меллина [21] исходного уравнения в угле Λ в задачу на отрезке
, , – изображение. Выписанное уравнение на собственные значения можно получить и определенной заменой переменных, преобразовывающей задачу в угле в задачу на некоторой простой области, например, полосе [17], полупространстве [33] в случае уравнения Лапласа. Несложно определить его решение как решение задачи Штурма-Лиувилля. Оно имеет вид: , , . Обратное преобразование Меллина даст разложение решения: , где принадлежит конечному промежутку,В случае уравнения Лапласа коэффициенты λ разложения включают в себя конечный ряд из полученных характеристических чисел
для [25; 32].Наличие неоднородных граничных условий на
приводит к возникновению дополнительных слагаемых в таком разложении, гладкость которых измеряется в пространствах Соболева с весом [35]. Для определения их полной асимптотики и регулярности в рамках шкалы “обыкновенных” пространств Соболева требуется дополнительное исследование. Например, полиномиальная правая часть в угле раствора (см. пункт 0) приводит к разложению с порядком . Величина регулярна при рассмотрении пространства с показателем гладкости , она регулярна также и для некоторых пространств Соболева с весом. При работе в шкале соболевских пространств , , её уже необходимо учитывать как нерегулярную часть. Отметим, что шкала весовых пространств “с однородной нормой”, возникающих при использовании метода Кондратьева, не имеет пересечений со шкалой пространств Соболева [32]. Мы ее не используем.