Между биномиальными коэффициентами имеется много важных и интересных соотношений. Например,
. Последнее тождество позволяет быстро вычислять биномиальные коэффициенты для небольших n по следующему правилу: для и формула позволяет перейти к и т.д. Для использования этого алгоритма надо помнить, что при любом n.Дополнительные задачи по комбинаторике.
Задача 5. Сколькими различными маршрутами можно разнести корреспонденцию в пять адресов. ( Маршрут определяется последовательностью адресатов)?
Решение. Занумеруем адреса цифрами от 1 до 5. Каждый маршрут определяется набором из пяти цифр, например, (2,5,3,4,1). Различных наборов из 5 цифр, отличающихся различным порядком следования цифр, будет 5!=120.
Задача 6. Цифры 0,1,2,3 написаны на четырех разноцветных карточках. Сколько различных четырехзначных чисел можно сложить из этих карточек?
Замечание. Первая цифра числа не может быть нулем. Карточку можно использовать в числе только один раз.
Решение. Число различных комбинаций из четырех цифр (карточек) равно 4!. Не все эти комбинации отвечают четырехзначным числам, поскольку есть 3! комбинаций, начинающихся с нуля. Поэтому ответ 4!-3!=18.
Задача 7. В хоккейном турнире участвуют 6 команд. Каждая команда должна сыграет с каждой одну игру. Сколько игр сыграно в турнире?
Решение. Различные пары команд образуют сочетания из 6 по 2, поскольку порядок выбора среди двух команд, играющих в одной игре, не имеет значения, то число игр равно
Задача 8. Из трех классов спортивной школы нужно составить команду для соревнований, взяв по одному ученику от класса. Сколько различных команд можно составить, если в одном классе учатся 18, в другом 20, в третьем 22 ученика?
Решение. Воспользуемся правилом произведения, число команд равно произведению чисел 18, 20 и 22, т.е. равно 7920.
Задача 9. На плоскости задано множество A, состоящее из 8 точек. Три из них выкрашены в красный цвет и лежат на одной прямой, а остальные расположены так, что проходящая через пару точек прямая не содержит других точек множества. Через каждые две точки множества A проведено по прямой линии. Сколько всего прямых линий получилось?
Решение. Мы можем составить
пар точек и провести через них прямые, но не все они будут различны. Из трех красных точек мы можем составить пар точек, и все они определяют одну и ту же прямую. Поскольку все остальные пары точек образуют разные прямые, надо вычесть из общего числа пар все пары, образованные тремя красными точками, и компенсировать это вычитание добавкой единицы, т.к. одну прямую эти точки все - таки образуют. Ответ: .Задача 10. Сколькими способами можно упорядочить множество
так чтобы каждое четное число имело четный номер?Решение. Множество номеров чисел в перестановке можно разбить следующим образом.
. Нам надо, чтобы первая группа этих номеров соответствовала нечетным числам, а вторая – четным. Таким образом, при каждой фиксированной перестановке нечетных чисел в первой группе номеров, имеется перестановок четных чисел во второй группе номеров. Таким образом, общее число перестановок равно .Задача 11. В ящике находится 20 деталей. Известно, что 5 из них являются стандартными. Из этих деталей выбирают 3. Сколько существует способов выбора трех деталей таких, чтобы среди них была, по крайней мере, одна стандартная?
Решение 1. Множество всех возможных выборов трех деталей из 20 содержит
элементов, среди них троек содержит только нестандартные детали. Поэтому ответом задачи будет - =685.Решение 2. Указанное в условии множество троек можно представить как объединение трех (не пересекающихся!) множеств. Первое состоит из троек стандартных деталей. Их число
. Второе из троек, в которых две детали стандартные, а одна нестандартная, таких троек . Третье множество состоит из троек, содержащих ровно одну стандартную деталь. Таких троек -Поскольку эти множества не пересекаются, то чтобы получить ответ надо просуммировать полученные числа и убедится, что ответы совпали.
Комментарий. Простая идея разбить множество на непересекающиеся части, в каждой из которых подсчитать число элементов легче, широко используется при решении комбинаторных задач. Разбор этой задачи показывает, что решение можно получать разными способами. Конечно, каждый раз следует выбирать наиболее рациональный способ.
Задача 12. Из 7 разноцветных карточек разрезной азбуки составлено слово колокол. Ребенок, не умеющий читать, случайно рассыпал эти карточки. Сколькими способами из этих карточек он сможет снова составить слово колокол?
Решение. На карточках имеется 3 буквы о, 2 буквы к, 2 буквы л. Поэтому, первая буква слова колокол может быть выбрана 2 способами, вторая – 3 способами, третья – 2 способами. При уже выбранных первых трех буквах четвертая буква может быть выбрана еще 2 способами (поскольку одна буква о уже выбрана). Остальные буквы могут быть выбраны только одним способом. Таким образом, ответ равен произведению чисел 3, 2, 2, 2 т.е. равен 24.
Задача 13. Имеется прямоугольник, разбитый на клетки. По горизонтали n клеток, а по вертикали– m клеток. Можно двигаться только по сторонам клеток либо вправо, либо вверх. Сколько существует различных путей из левого нижнего угла в правый верхний угол?
Решение. Сопоставим ходам вдоль клеток цифры 0 и 1, таким образом, чтобы 0 означал движение вправо, а 1 – движение вверх. Тогда каждому пути соответствует набор из (n+m) цифр, причем в каждом наборе будет ровно n нулей и m единиц. Сколько таких наборов? Всего в таком наборе имеется (n+m) позиций, и надо среди них разместить m единиц (на остальных местах нули). Выбор таких путей можно осуществить
способами.Элементарные случайные события
Рассмотренные примеры и интуитивное представление о том, что такое вероятность, подсказывают, что нам предстоит ввести способ «измерения» вероятности событий из некоторой совокупности событий, определяемых конкретной задачей. Каждая задача о вычислении вероятности имеет в основе некоторый случайный эксперимент, итогом которого является одно из нескольких возможных элементарных событий. Правильное описание этих событий и придание этим событиям вероятности – важный шаг на пути решения задачи. Перейдем к математическому описанию событий.
Предполагается, что имеется некоторое множество объектов произвольной природы, называемое множеством элементарных событий или пространством элементарных событий. При помощи некоторого специального механизма случайного выбора или рандомизации (от английского слова «random», что означает «случайный») происходит (или может произойти) случайная реализация элементарных событий. Механизм случайного выбора может быть известен, но часто лишь предполагают, что такой механизм существует. Для облегчения понимания приведем несколько примеров.
Примеры пространств элементарных событий и механизмов случайного выбора
1. Бросание монеты. Выпадение герба кодируем цифрой «1», выпадение цифры - «0».(нулем) Имеется всего два собственных элементарных события - «1», и «0». Механизм случайного выбора – это само бросание монеты. Предполагается, что мы организуем бросание таким образом, что шансы выпадения 0 и 1 равны.