Смекни!
smekni.com

работа 9 страниц, 6 рисунков, 2 источника (стр. 2 из 3)

Рис.1. Схема ускорителя УКП-2-1.

УКП-2-1 – электростатический ускоритель с постоянным напряжением на ускоряющей структуре, основанный на принципе двойного ускорения. Отрицательные ионы ускоряются к высоковольтному положительному потенциалу, после чего, пройдя перезарядную мишень и изменив свой заряд на положительный, испытывают дополнительное ускорение к нулевому потенциалу.

Источник тяжелых ионов - источник тяжелых ионов с цезиевым распылением катода, разработанный и изготовленный в фирме National Electrostatic Corporation (США). В настоящее время в ходе модернизации ускорителя была заменена юстировочная система на новую с меньшим количеством степеней свободы, обеспечивающая простоту, удобство, а главное надежность юстировки источника.

Рис. 2 Источник тяжелых ионов с цезиевым распылением катода.

Для вывода пучка из источника используется фокусирующая система, схема которой представлена на рисунке 3.

Рис. 3 Новая конструкция вытягивающего электрода.

Перезарядная газовая мишень – трубка, расположенная на высоковольтном кондукторе и заполненная инертным газом под низким давлением, проходя через которую ионы теряют часть своих внешних электронов и меняют свой заряд с отрицательного на положительный.

Магнитный масс – анализатор состоит из электростатической линзы, высокостабильного поворотного магнита и спектрометрических щелей. Выделяет из общего ионного пучка ионы определенной массы.

Электростатический анализатор представляет собой два цилиндрических высоковольтных электрода, длиной более метра и радиусом закругления 700 мм, расположенных в вакуумной камере. Для того чтобы через анализатор прошел неискаженный пучок ионов, необходимо было точно совместить оси цилиндров, образующих поверхность электродов. Поэтому предварительно обработанные электроды были установлены на изоляторах на нижней крышке вакуумной камеры, после чего в сборе были проточены на карусельном станке их рабочие поверхности, для достижения наименьшего отклонения от соосности. Внешний вид анализатора представлен на рис. 4.

Рис. 4 Внешний вид электростатического анализатора.

Метод ускорительной масс-спектрометрии (AMS) базируется на классических принципах: предварительно ускоренные отрицательные ионы, производимые плазменным распылением анализируемого образца в ионном источнике, направляются в электростатический ускоритель тандемного типа. В перезарядной мишени ускорителя, кроме изменения заряда ионов, происходит также развал молекулярных ионов, которые могут повлиять на результаты измерений. После прохождения второго ускорения положительные ионы направляются в магнитный масс – анализатор, после магнитного масс - анализатора, пучок ионов проходит через электростатический анализатор и регистрируются системой детектирования.

Система регистрации.

Для выбора системы регистрации были рассмотрены следующие типы детекторов:

1. Твердотельный поверхностно-барьерный

2. Газовая ионизационная камера

3. Времяпролетный детектор

Для оценки эффективности использования детектора требуется оценить поток частиц на входе в систему регистрации. Предполагаемый ток на выходе из ионного источника при долговременной эксплуатации составлял 1 мкА, 6*1012 част/с. Если концентрация Pu в образце составляет 10-14 г/г, то получается при 3 мг исследуемого образца, в среднем, в 20 секунд вылетает 1 частица. Опыт эксплуатации показывает, что при прохождении пучка через инжекторного тракта и канала транспортировки потери пучка малы и мы считаем, что скорость счета меняется незначительно. Также как и при транспортировке пучка от перезарядной мишени к системе детектирования. А вот потерями на перезарядном устройстве мы пренебречь не можем, поскольку при прохождении через нее возникают многозарядные частицы. Соотношения между многозарядными (одно-, двух- и трехзарядными) частицами Pu на данный момент окончательно неизвестно, следовательно, не известны точные потери потока частиц. Но эти потери ориентировочно составляют 70%. Таким образом, общая пропускная способность канал тяжелых ионов составляет примерно 20 %, то есть скорость счета перед системой детектирования составляет 1 частицу в 100 секунд.

Твердотельный поверхностно-барьерный детектор.

В первую очередь был выбран твердотельный поверхностно-барьерный детектор, так как этот тип детекторов имеет нулевой уровень шума и хорошее энергетическое разрешение, что позволит избежать ложных отсчетов и регистрации случайно попавших ионов, рассеянных на элементах тракта. При анализе тяжелых элементов планируется измерять однозарядные ионы, что позволит избежать попадания в детектор кратных по массе ионов. Следовательно, энергия частиц будет в пределах 1-1,5 МэВ. Изучая литературу, я нашел статью [1] о фундаментальных ограничениях на использование твердотельных детекторов при регистрации низкоэнергетических тяжелых ионов. В ней приводятся два графика (рисунки 5 и 6).

Рис.5 Зависимость среднего количества электронно-дырочных пар от энергии налетающих ионов Рис.6 Зависимость ядерного тормозного дефекта от энергии налетающих ионов

На первом графике прямая линия показывает случай, когда вся начальная энергия тратится на процессы, связанные с созданием электронно-дырочных пар, а на втором графике – ситуацию, когда вообще не рождаются электронно-дырочные пары. Как видно из графиков с уменьшением энергии и массы налетающих частиц количество рождающихся пар заметно снижается. В связи с этим был сделан вывод, что использование твердотельного поверхностно-барьерного детектора будет неэффективно.

Времяпролетный детектор.

Во время-пролётном масс-анализаторе ионы вылетают из источника и попадают во время пролетную трубу, где отсутствует электрическое поле (бесполевой промежуток). Пролетев некоторое расстояние d , ионы регистрируются детектором ионов с плоской или почти плоской регистрирующей поверхностью. В 1950—1970 годах, в качестве детектора ионов использовался вторичный электронный умножитель «жалюзного типа» (Venetian blind), позже применялся комбинированный детектор, использующий две или иногда три последовательно расположенных микроканальных пластины (МКП).

Физический принцип работы времяпролетного масс-анализатора заключается в том, что разность потенциалов U ускоряет ионы в источнике ионов до скорости v согласно уравнению:

При фиксированной длине бесполевого промежутка от источника ионов до детектора ионов время полета ионов

тогда

Данный детектор является детектором импульсного типа, то есть он не может регистрировать поток частиц. Но использовать его в нашем случае можно по следующим причинам:

1. Он будет расположен в конце ионопровода, то есть после перезарядного устройства, анализирующих магнитов, электростатического анализатора, то можно утверждать, что до детектора будет долетать только Pu.

2. А как было сказано выше, плотность потока ионов плутония будет составлять 1 частицу в 100 секунд и, следовательно, для времяпролетного детектора, для которого скорость пролета и регистрации соизмерима с микро- и наносекундами, можно считать режим импульсным.

На абсолютно идентичном источнике тяжелых ионов на ускорителе NIES TERRA (Japan) для регистрации тяжелых ионов используется времяпролетный детектор, что означает возможность использования его в наших целях.

Для этого типа детекторов можно добиться разрешения в несколько тысяч. Хотя, строго говоря, разрешение имеет другой смысл. Разрешение, определяемое как M/DM, в данном случае характеризует конкретную массу. Имеет смысл характеризовать этот детектор по ширине пиков, величине, остающейся постоянной во всём диапазоне масс. Эта ширина пиков, обычно, измеряется на 50% их высоты. Для таких приборов ширина пика на полувысоте равная 1 является неплохим показателем и означает, что такой детектор способен различить номинальные массы, отличающиеся на единицу практически во всём его рабочем диапазоне.

К недостаткам такого рода детектора можно отнести его габариты, а также высочайшие требования к электронике.

Газовая ионизационная камера.

Ионизационная камера - газонаполненный датчик, предназначенный для измерения уровня ионизирующего излучения.

Измерение уровня излучения происходит путём измерения уровня ионизации газа в рабочем объёме камеры, который находится между двумя электродами. Между электродами создаётся разность потенциалов. При наличии ионов в газе между электродами возникает ионный ток, который может быть измерен. Ток при прочих равных условиях пропорционален скорости возникновения ионов и, соответственно, мощности дозы облучения.

В широком смысле к ионизационным камерам относят также пропорциональные счётчики и счётчики Гейгера-Мюллера. В этих приборах используется явление так называемого газового усиления за счёт вторичной ионизации — в сильном электрическом поле электроны, возникшие при пролёте ионизирующей частицы, разгоняются до энергии, достаточной, чтобы в свою очередь ионизировать молекулы газа. В узком смысле ионизационная камера — это газонаполненный ионизационный детектор, работающий вне режима газового усиления. Ниже термин используется именно в этом значении.