Смекни!
smekni.com

Введение (стр. 3 из 4)

Первым абсорбентом, применявшимся в промышленности для выделения ацетилена, являлась вода. При этом получается ацетилен 97 %-ной чистоты. Однако ввиду малой растворяющей способности воды по отношению к ацетилену требуется очень большой ее расход. Кроме того, необходима специальная отмывка газа от диоксида углерода и сероводорода, а также промывка маслом или растворителями для удаления тяжелых углеводородов. В связи с этим применение воды в качестве абсорбента не получило широкого распространения.

Абсорбция ацетилена может проводиться при положительных или при низких температурах. Для абсорбции при положительных температурах применяются малолетучие абсорбенты (диметилформамид, N-метилпирролидон, γ-бутиролактон); для абсорбции при низких температурах — летучие абсорбенты с низкой температурой плавления. В качестве растворителей для низкотемпературной .абсорбции ацетилена получили распространение аммиак, метанол, ацетон. Метод основан на увеличении растворимости ацетилена с понижением температуры, причем растворимость достигает максимума при температуре плавления раствора.

Повышение растворимости ацетилена позволяет снизить расход абсорбента, а применение более летучих растворителей — температурный уровень перегонки, вследствие чего уменьшается расход тепла на регенерацию абсорбента. Наряду с этим появляются дополнительные расходы на охлаждение до низких температур, но эти расходы значительно меньше, чем экономия на регенерацию абсорбента. Наиболее распространенным абсорбентом является метанол.

В связи с тем, что около 70 % эксплуатационных расходов и капитальных затрат в производстве ацетилена из углеводородного сырья падает на процесс выделения, экономическая эффективность этой стадии производства имеет большое практическое значение.

3 .Технологическая схема (описание).

Технологическая схема получения ацетилена окислительным пиролизом метана изображена на рис. 2. Кислород и метан подогревают до 600—700 °С в трубчатых печах 1 и 2, имеющих топки для сжигания природного газа. В реакторе 3 протекают вышерассмотренные процессы, причем газы выходят из него после «закалки» водой при 80°С и проходят для улавливания сажи полый водяной скруббер 4 и мокропленочный электрофильтр 5. Газы охлаждают водой в холодильнике 6 непосредственного смешения, после чего их промывают в форабсорбере 7 небольшим количеством диметилформамида или N-метилпирро-лидона и направляют в газгольдер 8. Вода, стекающая из гидравлического затвора реактора и из сажеулавливающих аппаратов, содержит 2—3 % сажи, а также малолетучие ароматические соединения. Она поступает в отстойник 9, с верха которого сажу и смолы собирают скребками и направляют на сжигание. Воду из отстойника возвращают в реактор как «закалочный агент», а ее избыток идет на очистку, чем создается замкнутая система водооборота без сбрасывания токсичных сточных вод. Газ из газгольдера 8 сжимается компрессором 10 до давления ~ 1 МПа, проходя после каждой ступени холодильники и сепараторы, не показанные на схеме. В абсорбере 11 он промывается диметилформамидом или N-метилпирролидоном, а непоглотившийся газ (Н2, СН4, СО, СО2) проходит скруббер 12, где при орошении водным конденсатом улавливается унесенный им растворитель. После этого газ можно использовать в качестве синтез-газа или топлива. Раствор в кубе абсорбера 11 содержит ацетилен и его гомологи, а также значительное количество близкого к ним по растворимости диоксида углерода с примесью других газов. Он проходит дроссельный вентиль 13 и поступает в десорбер 14 первой ступени. За счет снижения давления до ~0,15 МПа и

нагревания куба до 40 °С из раствора десорбируются ацетилен и менее растворимые газы. Ацетилен при своем движении вверх вытесняет из раствора диоксид углерода, который вместе с другими газами и частью ацетилена выходит с верха десорбера, предварительно отмываясь от растворителя водным

конденсатом. Эти газы возвращают на компримирование. Концентрированный ацетилен выводят из средней части десорбера 14, промывают в скруббере 15 водой и через огнепреградитель 16 выводят с установки.

Кубовую жидкость десорбера 14, содержащую некоторое количество ацетилена и его гомологов, направляют в десорбер 18 второй ступени, подогревая предварительно в теплообменнике 17. За счет нагревания куба до 100°С из раствора отгоняются все газы, причем из средней части колонны уходят гомологи ацетилена, направляемые затем на сжигание, а с верха — ацетилен с примесью его гомологов, возвращаемый в десорбер первой ступени. В растворителе постепенно накапливаются вода и полимеры, от которых его освобождают на установке регенерации, не изображенной на схеме.

Полученный на установке концентрированный ацетилен содержит 99,0—99,5 % основного вещества с примесью метилацетилена, пропадиена и диоксида углерода (по 0,1—0,3%).

4. Расчетная часть.

Целевая реакция описывается уравнением

2CH4 → C2H2+ 3Н2

Расход метана рассчитываем исходя из селективности и стехиометрических уравнений реакции.

Общий расход метана (кг/ч)

А=Gа 2Mм*100/(Ма С)= Gа*2*16*100/26С=4990 кг/ч

с учетом конверсии Gм= А*100/К=5454 кг/ч

Количество кислорода, подаваемого в реактор:

число кмоль:

метана Nм=340,88 кмоль/ч;

кислорода NО2=340,88*0,6=204,53 кмоль/ч

G О2.= 204,53*32=6545кг/ч

4.1 Материальный баланс.

Основой материального баланса является закон сохранения материи, согласно которому количество материала, поступающего в процесс (приходные статьи материального баланса), равняется количеству продуктов, получаемых в результате процесса (расходные статьи материального баланса). Материальный баланс должен составляться как для всего технологического процесса, так и для отдельных его элементов. Материальный баланс составляют за единицу времени — час, сутки, год — или за цикл работы на единицу исходного сырья или готовой продукции, т. е. за тот отрезок времени, в течение которого перерабатывается определенное количество сырья или получается определенное количество продукта. Материальный баланс может быть рассчитан в весовых, мольных или объемных единицах. Материальный баланс процесса представлен в таблице 1.

Таб.1 Материальный баланс

Материальный поток Количество

кг/ч

кмоль/ч

Приход
Метан

5454

340,88

Кислород

6545

204,53

Всего

11999

545,41

Расход
Ацетилен

1200

46,15

Метан

464

29

Кислород

66

2,0

СО

5968

206

СО2

3459

60,43

Н2

840

420

Всего

11999

763,58

4.2 Тепловой баланс.

Тепловой баланс отражает основное содержание закона сохранения энергии, согласно которому количество тепла, введенной в процесс (приходные статьи баланса), равно количеству тепла, получаемой в результате процесса (расходные статьи баланса).

Так же как и материальный баланс, тепловой баланс можно составлять для всего производственного процесса или для отдельных его стадий. тепловой баланс может быть составлен для единицы времени (час, сутки), для цикла работы, а также на единицу исходного сырья или готовой продукции.

Таб.2. Тепловой баланс

Наименование G, кг/ч Q, МДж/ч
Приход тепла
Метан

5454

10338

Кислород

6545

4225

Всего

11999

14563

Расход тепла
Ацетилен

1200

1740

Метан

464

879

Кислород

66

43

СО

5968

3223

СО2

3459

2158

Н2

840

6520

Всего

11999

14563

4.3 Расчет аппарата.

Расчет основных размеров реактора

Объем газообразного сырья

Vг=(Gс/Мс+Gп./Мп.)*22,4*Т*0,101/273*Р=

=(1308,99/2)*22,4*0,101*1723/273*0,11=84958,3 м3

Примем среднюю фиктивную скорость 14 м/с, тогда

S=84958,3/(14*3600)=1,68 м2

D=√S/0,785=√1,68/0,785=1,46 м

Vр=Vг*τ, где τ — среднее фиктивное время пребывания паров реакционной смеси в реакторе. Принимаем τ= 0,005 с, тогда

Vр=84958,3*0,005/3600=1,17м3

Длина реактора l= Vр/ S=1,24 м

4.4 Расчет трубчатой печи для нагрева сырья.

Исходные данные по 1 нагреваемому компоненту – метан:

- массовый расход метан Gн = 5454 кг/час;

- температура входа в печь Т = 20 °С;

- температура выхода из печи Т = 700 °С;

- давление на выходе из змеевика печи pвн = 0,11МПа.