Сравнение методов получения ацетилена. Основными недостатками карбидного метода получения ацетилена являются большой расход электроэнергии на получение карбида кальция, многостадийность превращения сырья (CaCO3→CaO→CaC2→С2Н2) и значительные капиталовложения в производство. Достоинство метода состоит в получении концентрированного ацетилена, очистка которого от небольшого количества примесей не встречает затруднений. Кроме того, получение карбидного ацетилена базируется на менее дефицитном каменном угле.
При получении ацетилена пиролизом углеводородов процесс протекает в одну стадию, требует меньших капиталовложений и затрат энергии (кроме электрокрекинга). Однако ацетилен получается разбавленным, и необходима довольно сложная система его выделения и очистки.
Имеется много противоречивых оценок экономической эффективности этих методов, на которые в перспективе может существенно повлиять проблема дефицита нефти и природного газа. В настоящее время более половины мирового производства ацетилена приходится на карбидный метод.
1.2. Выбор конструкции реактора (достоинства и недостатки).
Реактор (реакционная печь) окислительного пиролиза метана до ацетилена состоит из следующих частей: смесительного устройства, горелки (или горелочного блока), реакционной зоны и зоны «закалки».
Смеситель обеспечивает равномерную концентрацию исходных газов в горизонтальном сечении аппарата перед их поступлением в горелочный блок. Смесители могут быть различной конструкции, но при их разработке соблюдают следующие условия:
1) время пребывания газовой смеси в смесителе меньше индукционного периода воспламенения смеси (при 600° С он составляет 2—3 сек),
2) скорость газового потока в смесителе больше скорости распространения пламени.
Горелки (или горелочные блоки) реакционной печи могут быть двух видов В первых газовый поток перед (ходом в реакционную зону расчленяется на большое число струй малого диаметра Это так называемые многоканальные горелки В них скорости реакционного газового потока сравнительно малы. Для горелок второго типа (кольцевых) характерны высокие скорости газового потока, расчлененного на небольшое число мощных струй. Реакционная зона во всех печах ограничена, сбоку— стенками печи, сверху — горелкой (или горелочным блоком), снизу — зоной «закалки». Геометрические размеры и объем реакционной зоны должны обеспечивать замыкание факела и стабильный процесс пиролиза. Боковые стенки реакционной зоны можно изготовлять из огнеупоров или из металла. В реакторах, изготовленных из огнеупоров, наблюдаются меньшие потери тепла в окружающее пространство, чем в реакторе из металла, но на стенках реакционной зоны отлагается сажа, поэтому необходим сажеочистной механизм. В реактореиз металла стенки реакционной зоны защищены от действия температуры водяным экраном. Вода стекает тонкой пленкой по внутренним стенкам реакционной зоны и одновременно смывает сажу. Поэтому в таких реакторах сажеочистной механизм не нужен.
Зона «закалки» предназначена для быстрого охлаждения газов пиролиза. Это достигается впрыскиванием мелкораспыленной охлаждающей воды в поток газов пиролиза. Зона «закалки» представляет собой систему форсунок, подающих воду от периферии газового потока к центру и расположенных несколькими ярусами. Схема одного из распространенных реакторов окислительного пиролиза метана изображена на рис. 1. Корпус реактора 2 футерован высокоогнеупорным материалом. Метан и кислород входят в камеру смешения 1, проходят диффузор 8, имеющий предохранительную мембрану 3, и попадают в сопла горелочной плиты 7, под которую вводят стабилизирующий кислород. В камере 4 протекают неполное горение метана, образование
ацетилена и сажи. Через форсунки 6 вбрызгивается «закалочная» вода, и продукты пиролиза моментально охлаждаются. Газ пиролиза отводят из нижней камеры 5, где оседает часть образующегося кокса, который потом отводят вместе с водой. При нормальном режиме окислительного пиролиза на горение расходуется 55% метана, на образование ацетилена 23—25%, на образование сажи ~4%; степень конверсии метана достигает 90%, степень конверсии кислорода превышает 99%
2. Физико-химические основы процесса и веществ.
Химическая схема, механизм реакции.
Ацетилен — бесцветный газ, обладающий в чистом виде слабым эфирным запахом; конденсируется при —83,8°С (0,102 МПа); критическая температура +35,5°С; критическое давление 6,04 МПа. Он имеет очень широкие пределы взрываемости в смеси с воздухом [2,0—81 % (об.) С2Н2] и с кислородом [2,8— 78 % (об.) С2Н2]. Взрывоопасность ацетилена усугубляется из-за высокой экзотермичности его разложения на простые вещества.
Это разложение идет в отсутствие кислорода при наличии соответствующих инициаторов (искра, перегрев из-за трения). При давлении до 0,2 МПа разложение имеет местный характер и не является опасным. При более высоком давлении разложение приобретает характер взрыва с детонационной волной, распространяющейся со скоростью свыше 1000 м/с. Однако взрыво-опасность ацетилена снижается при его разбавлении инертными газами или парами, которые аккумулируют тепло первичного разложения ацетилена и препятствуют его взрывному распаду. Взрывоопасность ацетилена сильно возрастает в присутствии металлов, способных к образованию ацетиленидов (например, Cu2C2), что надо иметь в виду при выборе конструкционных материалов.
Для предохранения от взрывов чаще всего ограничивают давление при производстве ацетилена и различных синтезах безопасными пределами —0,2 МПа. При необходимости работы под давлением разбавляют ацетилен азотом, а иногда парами реагентов. При сжатии ацетилена применяют специальные ацетиленовые компрессоры, имеющие низкую скорость перемещения движущихся частей, малую степень сжатия и температуру газа после каждой ступени компрессора не более 100°С. При расчете аппаратуры и трубопроводов принимают повышенный запас прочности. Кроме того, применяют специальные предохранительные устройства, размещаемые в разных точках технологической схемы. Из них сухие затворы (в виде шарикового клапана) предохраняют только от распространения пламени. Мокрые огнепреградители и гидравлические затворы защищают предшествующую аппаратуру от распространения взрыва. Огнепреградитель представляет собой башню с насадкой, орошаемую водой, а гидравлическим затвором служит аппарат, в котором ацетилен барботирует через слой воды. Во всех случаях при превышении установленного давления сбрасывают газы в атмосферу через гидравлические затворы или предохранительные мембраны.
Другим технически важным —свойством ацетилена является его растворимость, значительно более высокая, чем у других углеводородных газов. Так, в 1 объеме воды при 20°С растворяется около 1 объема ацетилена, а при 60 °С растворяется 0,37 объема. Растворимость снижается в водных растворах солей и Са(ОН)2. Значительно выше растворимость ацетилена в органических жидкостях; при 20 °С и атмосферном давлении она составляет (в объемах ацетилена на 1 объем растворителя): в метаноле 11,2, в ацетоне 23, в диметилформамиде 32, в N-метилпирролидоне 37. Растворимость ацетилена имеет важное значение при его получении и выделении из смесей с другими газами, а также в ацетиленовых баллонах, где для повышения их емкости по ацетилену и снижения давления используют растворитель (ацетон).
Существует два метода выделения ацетилена: абсорбция или адсорбция. Практическое значение в мировой практике получил абсорбционный метод выделения ацетилена.
Обычно газ пиролиза после закалки и охлаждения поступает на очистку от сажи промывкой маслом, фильтрованием через коксовые или рукавные фильтры. Очищенный от сажи газ пиролиза компримируется до давления 0,6—3 МПа, после чего направляется на выделение ацетилена, обычно методом абсорбции.
Абсорбционный метод выделения ацетилена основан на различной растворимости отдельных компонентов газовой смеси в жидких абсорбентах, к которым предъявляются следующие требования.
1. Высокая растворяющая способность по отношению к ацетилену. Растворяющая способность абсорбента определяет соотношение растворитель — ацетилен, от которого зависят энергетические расходы на циркуляцию, охлаждение и десорбцию, а также размеры аппаратуры.
2. Высокая селективность извлечения ацетилена, определяющая чистоту ацетилена.
3. Низкая летучесть при умеренных температурах кипения. Низкая летучесть обеспечивает минимальные потери абсорбента, а от температуры кипения зависит температура процесса регенерации абсорбента.
4. Инертность по отношению к другим компонентам газа пиролиза и высокая термическая устойчивость.
5. Низкая температура кристаллизации.
6. Доступность и низкая стоимость.
Простейшим абсорбентом является вода. Помимо воды для выделения ацетилена применяется ряд селективных растворителей: ацетон, диметилформамид, N-метилпирролидон, γ-бутиролактон, метанол, аммиак.
Наиболее низкой растворяющей способностью обладает вода. Растворимость ацетилена в других растворителях достаточно высока и увеличивается с понижением температуры. Однако понижение температуры процесса извлечения ацетилена ограничивается температурой плавления растворителя.
Наряду с ацетиленом в абсорбентах растворяются и другие компоненты ацетиленсодержащего газа, но. растворимость их значительно меньше, чем ацетилена. Неабсорбированные компоненты (абгазы) выводятся из абсорбера. При высоком содержании водорода и оксида углерода абгазы могут использоваться как синтез-газ в других процессах. Насыщенный абсорбент направляется на десорбцию с выделением малорастворимых газов, ацетилена и высших углеводородов (высшие гомологи ацетилена и др.). Для получения чистого ацетилена применяется двухступенчатая десорбция.