где п—половина четного числа кадров N=2n, k—»расстояние» от данного кадра до другого. Сам кадр находится «от себя» на расстоянии k=0, от соседа—на «расстоянии» k=1, от следующего кадра—на «расстоянии» k ==2 .и т.д., у нас шестнадцать кадров, следовательно, мы имеем
Начнем рассмотрение с произвольного кадра, например, с первого. Для него, положив k=0, получим t=1. При k= 2, ∆t=2^0.5>1. При и k=4 находим, что
т.е. в кадре 5, в котором находится наблюдатель III, время относительно кадра 1 «останавливается» (подчеркнем, что только относительно кадра 1).
Наконец, при k = 8 получаем:Таким образом, в кадре 9, в котором находится антипод наблюдателя I, получаем обратное течение времени, равное по «скорости» течению времени в кадре 1.
Итак, у каждого кадра есть «горизонт», т.е. кадры, время в которых относительно этого кадра «стоит», а затем начинает течь в противоположную сторону.
Продолжим нашу спекуляцию дальше. В такой «вселенной» должно наблюдаться «красное смещение», но причина его — не раз-бегание галактик, а замедление времени в удаленных объектах. Свет же от объектов, находящихся за «горизонтом», вообще не должен доходить до наблюдателя, поскольку с его позиции он должен идти в «другую сторону»: от объекта, которым он поглощен, к источнику.
Эта модель напоминает модель Де Ситтера [38] с тем отличием, что в качестве пространственного каркаса, взята односторонняя поверхность, а не сфера. Это дало возможность естественным образом «отождествить» пространственно удаленные точки и связать искривление времени с организованностью.
Глава IX. СИСТЕМЫ, НАРИСОВАННЫЕ НА СИСТЕМАХ
По-видимому, одной из главных методических задач исследования сложных объектов является выработка особых картин действительности, в которых между духовной и материальной феноменологиями устанавливались бы конструктивные отношения. От решения этой задачи зависит, будем ли мы иметь возможность рассматривать системы, «наделенные интеллектом», как единые системы или нам придется довольствоваться двумя не связанными планами изучения. По-видимому, необходимо построить специальный конфигуратор, различные частные схематизации должны стать проекциями некоего идеального объекта. Различные феноменологии в случае успеха окажутся проекциями некоего одного и тем самым — связанными. По-видимому, понадобятся совершенно новые понятия, чтобы решить эту задачу [19, 20].
Мы попытались в этой главе наметить одну группу средств, которые, с нашей точки зрения, могут оказаться полезными при построении подобных конфигураторов.
Организм и субстанция
Когда говорят о системах, то часто предполагают, что есть некоторая субстанция, из которой они выполнены и которая предопределяет их жизнь. С первым противоречием мы сталкиваемся при рассмотрении простейших живых организмов. «Индивидуальность тела, — говорил Н. Винер, — есть скорее индивидуальность огня, чем индивидуальность камня, это индивидуальность строения, а не кусочка вещества». Организм как целое не связан с «атомами». Мы имеем дело с действительностью, которая целостна и ничуть не менее реальна, чем камень, и которая не состоит из какой-то постоянной материи.
Организм как волна
Очень привлекательны попытки строить функциональные модели живых организмов, представляя их в виде автоматов, которые помещаются на клеточную или «сотовую» структуру. Каждый элемент этой структуры может находиться в конечном числе состояний. Конфигурация «активных» состояний «клеток» изображает организм. Можно построить перемещающийся организм. Он будет распространяться, как своеобразная волна [23], Один из вариантов такой модели мы рассмотрели в предыдущей главе. Такие автоматы воспроизводят некоторые черты живых организмов, более того, они могут рассматриваться как законченные объяснения ряда процессов. Хотя нам и удается, строя подобные модели, оторвать организмы от конкретных «атомов», все равно мы имеем дело с субстанцией, по которой, как волна, двигается организм. Субстанция первична—волна вторична. Нет субстанции, нет и волны.
Отношение «ткань-рисунок»
Автор одного фантастического рассказа выстроил на поле стадиона несколько тысяч человек. Каждый выполнял функцию элемента цифровой вычислительной машины (ничего принципиально неосуществимого в такой ситуации нет). Теперь представим себе, что эта машина, выполненная из конкретных «человеческих организмов», функционирует в течение многих лет. За это время в этих организмах заместится вещество (организм как бы скользит по субстанции). Эти организмы будут состоять из других «атомов», но оставаться по-прежнему теми же самыми людьми. Теперь представим себе, что цифровая машина как бы скользит по полю человеческих организмов: например, каждый день происходит смена функций между людьмя, скажем, сегодня каждый человек выполняет ту функцию, которую его сосед выполнял вчера. Пусть при такой смене «субстанции» конструкция вычислительной машины не меняется. Таким образом, мы построили устойчивую функционирующую структуру, которая скользит по функционирующей структуре, которая, в свою очередь, скользит по субстанции атомов. Субстратом машины являются функциональные системы человеческих организмов, а их субстратом служит поле «атомов».
Человеческие тела находятся в разных отношениях к полю атомов и к вычислительной машине. По отношению к атомам тело—функциональная система. По отношению к вычислительной машине тело—мертвая субстанция, пространство, в котором эта система живет.
Условимся отношение, в котором находятся функциональная схема и субстрат, именовать отношением «ткань-рисунок». Функциональная схема как бы «нарисована» на субстрате. Но это не рисунок типа рисунка на ковре, это скорее подвижное изображение на экране. На самом рисунке может быть снова изображен рисунок. Например, можно представить себе кадр кинофильма, где показывается кинозал, в котором демонстрируется кинофильм. Кинофильм в кинофильме—это рисунок на рисунке: тканью служит рисунок экрана на «действительном» экране.
Отношение «ткань-рисунок» использовал Станислав Лем, когда заставлял конструктора-космогоника строить из «импульсов» цивилизации внутри гигантской машины. Внутри этих цивилизаций появлялись конструкторы, которые снова строили гигантские вычислительные машины, в которых оказывались реализованными цивилизации, в которых снова появлялись конструкторы. И так продолжалось до тех пор, пока не удавалось создать цивилизацию, в которой все счастливы. . .
Замкнутые цепочки отношений «ткань-рисунок»
Из рассмотренных примеров видно, что отношения типа «ткань-рисунок» могут образовывать цепочки (рис. 62). Стрелка фиксирует отношение «ткань-рисунок». Элементы в этой структуре неравноправны. Например, элемент 1 (он символизирует «поле атомов») выполняет только функцию ткани. Это «материя как тако
вая», она не является рисунком на какой-то другой, более «глубокой» ткани. После того как автор нарисовал такую схему, у него возникло непреодолимое желание лишить элемент 1 привилегии. Для этого достаточно замкнуть цепочку: элемент 1 «сделать» рисунком на элементе 4 (рис. 63). Теперь все элементы равноправны. Каждый из них выполняет две роли.Сразу же возникает вопрос, не является ли замыкание слишком формальным приемом? Мыслима ли достаточно содержательная конструкция, которая бы «действовала» и имела подобную кольцевую организацию?
Замкнутые цепочки автоматов, «нарисованных» друг на друге
Рис. 64 Рис. 65..
в той клетке, где в предыдущий момент «находилось» состояние b1; b1 соответственно воспроизводится в той клетке, в которой находилось Ci; состояние Ci заменяет состояние di, и наконец, di воспроизводится в клетке, которая в предыдущий момент находилась в состоянии а1. Легко видеть, что если предоставить систему а1b1c1d1 самой себе, то она начнет вращаться по часовой стрелке (рис. 65).
Клетки, каждая из которых может находиться в четырех состояниях, — это «ткань», а вращающийся автомат — «рисунок».
Теперь представим себе, что каждое из состояний а1, b1, c1, d1 может находиться в четырех состояниях: a2, b2, c2 ,d2. Построим новый автомат и поселим его на движущемся автомате. Пусть законы воспроизводства состояний аналогичны вышеизложенным. Система a2b2c2d2. начнет вращаться по часовой стрелке, перемещаясь по «ткани» автомата а1b1c1d1. Относительно бумаги, которой принадлежит клеточное пространство, автомат a2b2c2d2 будет перескакивать через одну клетку. Действительно, автомат а1b1c1d1 повернется относительно «пространства бумаги» на одну клетку, и относительно этого автомата на одну клетку повернется автомат a2b2c2d2