К юго-западу от трубки «Академическая» отмечается близкая к линейной зона положительных и отрицательных изометричных аномалий (±1.0 – 1.5 mSim/m) северо-западного простирания. В средней своей части она совпадает в плане с комплексной аномалией 1к/02, имеющей то же простирание, и с цепочкой малых по размеру и интенсивности аномалий магнитного поля.
Результаты работ методом ДИП с разносом 10 м. По результатам измерений методом ДИП с разносом 10 м также построена карта изолиний эффективной проводимости с сечением 0.5 mSim/m.
По материалам наблюдений с данным разносом трубки выделяются гораздо более уверенно и контрастно, чем с разносом 20 м. Над трубкой «Ильменитовая» отмечается положительная аномалия S интенсивностью до 6.5 mSim/m. Контуры аномалии ДИП практически совпадают с контурами аномалии ρк, полученной по методу дипольного электропрофилирования, и слабоинтенсивной магнитной аномалии.
Опытно-методические работы по электроразведке методом точечного электромагнитного зондирования (ТЭМЗ). В сезоне 2000 г на участке «Киенг» выполнялись работы по испытанию аппаратуры «Импульс-СЛ» и внедрению технологии электромагнитного сканирования. Наблюдения выполнялись в рамках проведения опытных электроразведочных работ по определению наиболее эффективной методики поисков кимберлитовых тел в условиях открытых полей. Работы производились на участке детальных работ по сети 25*25 и 25*50 метров в районе расположения эталонных объектов – трубок «Долгожданная» и «Нюрбинская».
Устройство и комплектация аппаратуры «Импульс-СЛ» позволяли выполнять работы по ТЭМС в двух модификациях – сканирование приповерхностного слоя и электромагнитное сканирование с закрепленным источником. Первоначально планировался к внедрению метод сканирования приповерхностного слоя, выполняющийся с локальной приемно-генераторной установкой с коаксиально позиционированными антеннами. Но в первом же маршруте выявились две серьезные проблемы, не позволившие продолжать работы по данной методике – конструкционные недоработки антенн и высокое энергопотребление приемно-генераторной установки. Недоработки антенн заключаются, по словам участвовавшего в работе представителя СНИГГиМС, в «неравномерности параметров» приемных диполей. Этот недостаток, по-видимому, можно будет устранить в лабораторных условиях. Однако вторая проблема – повышенное энергопотребление – полностью ставит под сомнение возможность реализации данной методики с аппаратурой «Импульс-СЛ». Согласно техническому описанию, время работы аппаратуры в режиме работа/пауза от 1 аккумуляторной батареи Dryfit SS-12/16A500 составляет около 6 часов. На практике, при использовании приемно-генераторной установки это время составило 15-20 минут. Необходимо также отметить, что размеры коаксиально позиционируемой антенны – 2.50*1.20 м создают большие сложности при передвижении в таежных условиях, а также при размещении данной антенны на точке измерения. Видимо, при организации геофизических наблюдений по данной методике, в составе работ топоотряда отдельным пунктом придется предусмотреть подготовку площадок для производства измерений с коаксиально позиционируемой антенной. Для облегчения переноски антенн желательно изменить их конструкцию – сделать их складывающимися или сборными. Несомненно, предлагаемая методика заслуживает серьезного внимания, но ее аппаратурная реализация неприемлема для промышленного внедрения. Возможно, имеет смысл обратиться к другим разработчикам.
Метод ТЭМЗ от закрепленного источника не может быть рекомендован для работы в открытых полях. Эти работы выполнялись с целью отработки методики и испытания аппаратуры. Производительность данного метода ниже традиционных методик профилирования, за счет дополнительных затрат на организацию генераторной точки, раскладку питающей линии и последующих перебазировок (при отработке больших площадей). Комплекс работ по организации генераторной точки включает в себя установку палатки, в которой постоянно находится генератор G-6000 и аккумуляторная группа; периодическую зарядку аккумуляторов – для чего необходимо содержание на точке бензоагрегата. При работах на участке «Киенг» использовались 5 аккумуляторов емкостью 190 ампер*часов. В качестве питающей линии использовалась прямоугольная петля размером 1км*1км. Размеры петли могут быть и другими в зависимости от решаемых задач. Наблюдения выполняются по методике МПП по сети профилей внутри и вне генераторной петли с аппаратурой «Импульс-СЛ» без переносного генератора и с приемными антеннами размером 1.20*1.20 м. Синхронизация питающих импульсов и циклов измерений осуществляется посредством использования GPS. В ходе опытно–методических работ измерения производились по профилям внутри генераторной петли. Перебазировки питающей петли производились по способу «квадрата», вокруг генераторной точки. Таким образом, с одной генераторной стоянки отрабатываются 4 квадрата. В настоящее время данная методика является отработанной и может быть рекомендована, как детализационная для аномалий МПП на площадях с развитием траппов. Учитывая средние размеры аномалий МПП, каждая из них практически может быть детализирована с использованием только одной генераторной петли. Достоинствами методики являются большая глубинность исследований и высокая разрешающая способность.
В процессе работы были выявлены многочисленные недостатки, как в конструкции аппаратуры, так и в программном обеспечении. Вообще следует отметить, что аппаратура в ее настоящем исполнении громоздка и неудобна в работе, кроме того, мало приспособлена для работы в таежных условиях. К примеру, оператор в процессе работы не в состоянии сам включить или выключить прибор, об этом приходится просить рабочего. Подробное описание претензий приведено в «Проекте технического задания на доработку аппаратуры «Импульс-СЛ»». Начиная со второй недели работ, в обоих приборах обнаружилась одна и та же неисправность, возможно связанная с недоработками в управляющей программе. Внешне это проявляется как «зависание» программы. Чтобы привести прибор вновь в рабочее состояние, требовалось несколько последовательных включений и выключений. Для одного из приборов этот «метод» часто не давал положительного эффекта, в результате чего приходилось прерывать маршрут. Кроме того, часть измерений оказались бракованными вследствие неправильной загрузки или искажения конфигуративных файлов (т.е. файлов, содержащих установки, непосредственно определяющие условия измерений – привязка пикета, временной диапазон измерений, параметры установки и др.). Часть измерений пришлось выполнить заново.
Также были выявлены недоработки в программе интерпретации результатов ТЭМЗ (программа “ABCWin”). Наиболее серьезными из них являются отсутствие автоматического режима для обработки однотипных кривых и «выбрасывание» алгоритмом программы верхнего слоя. Расчленение разреза происходит, начиная с глубины 200 м. По-видимому, полностью избавиться от этого недостатка невозможно, вследствие больших размеров генераторной петли, но необходимо существенно уменьшить мощность «выпадающего» слоя. Кроме того, с большими искажениями обрабатываются результаты зондирований вблизи проводов питающей линии (до 100 м.). Все это подробно описано в «Проекте технического задания на доработку программного обеспечения ТЭМС»», экземпляр которого был передан представителю СНИГГиМС в сентябре 2000г. По вышеперечисленным причинам, а также в связи с большим объемом полевых работ результаты ТЭМС не обрабатывались. Все материалы были переданы для интерпретации представителю СНИГГиМС. Аппаратура «Импульс-СЛ», имеющаяся в распоряжении НГФП, требует серьезного ремонта, в настоящее время она не полностью работоспособна. Ремонт аппаратуры и доработка программного обеспечения могут быть выполнены только работниками СНИГГиМС.
Резюмируя все вышесказанное, необходимо отметить перспективность предлагаемых методов, но в тоже время – неудовлетворительную техническую реализацию. Доработка аппаратуры и программного обеспечения требует серьезной целенаправленной работы.
Над трубкой «Академическая» аномалия ДИП распадается на ряд локальных – 3 относительно крупных интенсивностью до 3.7, 5.3 и 4.6 mSim/m, и 2 мелких – интенсивностью до 3.4 и 3.8 mSim/m соответственно. Общий генерализованный контур аномалии S в целом совпадает с контуром трубки, учитывая и вскрытую бурением в 2002 году юго-западную часть. Локальная аномалия S, отвечающая этой части трубки, имеет субмеридиональное, почти перпендикулярное оси простирания кимберлитового тела, направления, не выходя, впрочем, далеко за пределы его контура, проводимого согласно данным электро- и магнитометрии. Вдоль северо-западного фланга аномалии проходит цепочка аномалий низкой (до отрицательной) проводимости, не столь, впрочем, очевидных, как при разносе 20 м. Следует также отметить, что аномалия ДЭП над трубкой «Академическая» при ближайшем рассмотрении тоже состоит из трех частей, сливающихся в одну аномалию. Магнитная аномалия, отвечающая центральной и северо-восточной частям кимберлитового тела, также имеет два экстремума.
Краткие выводы по результатам выполнения ДИП с аппаратурой «Geonics ЕМ34-3»
Проведенные опытно-методические работы показали, что на эталонном участке с имеющимися известными кимберлитовыми трубками и комплексными геофизическими аномалиями, по ряду признаков, возможно, отвечающими кимберлитовым телам, метод дипольного индукционного профилирования, выполненный с аппаратурой «Geonics 34-3» показал хоть и не блестящий, но все же неплохой результат. Как известные тела, так и предполагаемый на момент работ объект, создающий комплексную по ряду геофизических методов аномалию, в большей или меньшей степени отразились в поле эффективной проводимости.