Смекни!
smekni.com

по дисциплине: «Средства измерения неэлектрических величин» на тему: «Измерение больших линейных геометрических размеров» (стр. 1 из 2)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ РАДИОЭЛЕКТРОНИКИ

Кафедра «Метрология и измерительная техника»

РЕФЕРАТ

по дисциплине: «Средства измерения неэлектрических величин»

на тему: «Измерение больших линейных геометрических размеров»

Выполнила: Проверил:

ст. гр. МИТ-02-1 ст. пр. Белокурский Ю.П.

Крючкова Л.Д.

2005

СОДЕРЖАНИЕ

Перечень условных обозначений, символов, единиц, сокращений и терминов..…...3

Введение….……………..………………………………………………………………..4

1 Измерение уровней……………………………………………………………….……5

2 Измерение расстояний………………………………………………………………...8

3 Поверочная схема………………………………….....................................................10

Заключение……………………………………………………………………………...11

Перечень ссылок………………………………………………………………………..12

ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ, СИМВОЛОВ, ЕДИНИЦ, СОКРАЩЕНИЙ И ТЕРМИНОВ

Гц – герц;

кг – килограмм;

кГц – килогерц;

км – километр;

м – метр;

МГц – мегагерц;

мкс – микросекунда;

мм – миллиметр;

ОКГ – оптический квантовый генератор;

с – секунда;

АМ – амплитудная модуляция;

GPS – Глобальная Позиционная Система.

ВВЕДЕНИЕ

Измерение линейных размеров требуется выполнять в значительно большом диапазоне – от долей микрометра, например, при измерении микрогеометрии шероховатостей в процессе производственного контроля чистоты отделки поверхностей в точном машиностроении до многих сотен и тысяч километров при измерении расстояний в геодезии, навигации, строительстве, тяжелом машиностроении или астрономии.

Диапазон размеров, встречающихся при технических измерениях, можно подразделить на ряд характерных групп. Это, во-первых, размеры, измеряемые в машиностроении и лежащие в диапазоне от долей микрометра до нескольких метров. Ко второй группе можно отнести размеры от 100 мм до 100 м, которые требуется измерять при определении уровней горючего в нефтехранилищах, баках самолетов и автомобилей, уровней зерна в элеваторах, разностей уровней верхнего и нижнего бьефов гидростанций и т.п. И, наконец, третья группа размеров – это расстояния между какими-либо телами, когда измеряемые размеры превосходят несколько метров и могут достигать многих тысяч километров [1]. В данном реферате рассмотрены методы измерения охватывающие вторую и третью группы размеров, а именно – от 1 метра и до тысяч километров.

1 ИЗМЕРЕНИЕ УРОВНЕЙ

Наиболее простым методом измерения уровней, т.е. расстояний порядка долей метра или нескольких метров, является применение масштабных преобразователей в виде рычажных или ременных передач с последующим измерением относительно небольших выходных перемещений.

Примером может служить серийно выпускаемый прибор УДУ-5, показанный на рис. 1.1 [2]. Металлический поплавок 8 переме­щается по направляющим тросам 6 и соединен со стальной перфори­рованной лентой 7, которая проходит в защитной трубе через на­правляющие ролики 5 и гидрозатвор 4 в виде колена, залитого незамерзающей жидкостью. Стальная лента навивается на барабан 1 или сматывается с него. Постоянное натяжение ленты обеспечивается спиральной пружиной, механически связанной с мерным зубчатым шкивом 2, зубцы которого входят в отверстия ленты, обеспечивая тем самым надежное зацепление ленты со шкивом. Вращение шкива передается на механический счетчик, установлен­ный в блоке 3 и позволяющий отсчи­тывать уровень в миллиметрах в виде пятизначного числа. В этом же блоке 3 установлен связанный со шкивом рео­статный преобразователь или кодовый диск, позволяющие производить дистан­ционную передачу результатов измере­ния уровня на расстояние 1-5 км.

Рисунок 1.1 - прибор УДУ-5:

1 – барабан; 2 - мерный зубчатый шкив; 3 – блок; 4 – гидрозатвор; 5 - на­правляющие ролики; 6 - направляющие тросы; 7 - стальная перфори­рованная лента;

8 - металлический поплавок

Прибор УДУ-5 при пределе измере­ния 12 м имеет погрешность ±3 мм при отсчете показаний по механическому счетчику, ±15 мм при применении рео­статного преобразования и ±1 мм при использовании кодового диска [3].

Широкое применение при измерении уровня находят емкостные преобразова­тели, так как в них может быть до­стигнуто линейное изменение емкости на протяжении сравнительно большой длины. В качестве иллюстрации на рис. 1.2 показано устройство уровнемера, позволяющего исключить зависимость ре­зультатов измерения от изменения диэлектрической проницаемости среды, уровень которой измеряется [4]. Датчик уровнемера (рис. 1.2, а) содержит четыре коаксиальных конденсатора, два из которых (верхние компенсационные) находятся в воздухе (С

и С
), один (нижний компенсационный) полностью погружен в исследуе­мую среду (С
) и один (рабочий) частично погружен в исследуемую среду (С
).

Измерительная цепь уровнемера (рис. 1.2, б) содержит гене­ратор Г, усилитель Ус, вольтметр и два трансформатора Тр1 и Тр2 и работает в режиме статического уравновешивания. Если коэффициент усилителя достаточно велик, то можно считать, что напряжение на его входе, зашунтированном паразитной ем­костью кабеля С

, практически равно нулю. Это означает, что равна нулю сумма токов, поступающих на вход усилителя через емкости С

, С
, С
, С
:

,

где

-

- количество витков соответствующих обмоток транс­форматоров. Отсюда

.

Выразим величины емкостей датчика через длины l соответст­вующих конденсаторов, измеряемый уровень h, емкость на единицу длины в воздухе

и относительную диэлектрическую постоянную исследуемой среды
. Тогда
;
;
;
. Соответственно выражение для
преобра­зуется следующим образом:

.

Рисунок 1.2 – Устройство уровнемера:

а) датчик уровнемера; б) измерительная цепь уровнемера

Если датчик и измерительную цепь выполнить так, чтобы соблю­дались равенства

и
, то получим
.

Таким образом, показания прибора пропорциональны изме­ряемому уровню h и не зависят от величины диэлектрической по­стоянной ε.

На рис. 1.2, б штриховыми линиями показаны экраны, которые позволяют практически полностью исключить погрешности от емкостей кабелей, соединяющих датчик с измерительной цепью [4]. Поскольку емкости воздушных конденсаторов С

и С
зави­сят от диэлектрической проницаемости воздуха, которая достаточно стабильна, то вместо верхних компенсационных конденсаторов С
и С
(рис. 1.2, а) могут быть использованы обычные постоянные конденсаторы.

2 ИЗМЕРЕНИЕ РАССТОЯНИЙ

Простейшим и наиболее распространенным методом измерения расстояния, пройденного движущимся объектом, является подсчет числа оборотов колеса, сцепляющегося с полотном дороги. Таким методом измеряется путь автомобиля с помощью механического счет­ного механизма барабанного типа, подключаемого к трансмиссии автомобиля через соответствующий понижающий редуктор. В более сложных устройствах, например в морских лагах, передача угла по­ворота крыльчатки лага к измерительному устройству осуществляет­ся электрическим путем с помощью синхронной сельсинной передачи. А в наиболее совершенных современных приборах этого типа пре­образователь, воспринимающий скорость вращения колеса или крыльчатки, преобразует ее в частоту электрических импульсов. Пройденный путь определяется как интеграл от скорости по вре­мени путем подсчета полного числа электрических импульсов за время пути. Этот подсчет осуществляется электронными счет­чиками числа импульсов с непрерывной выдачей результатов на светящееся табло цифрового прибора и с их одновременным вводом в цифровые вычислительные или управляющие устройства.