Но для осуществления цепной реакции нельзя использовать любые ядра, делящиеся под влиянием нейтронов. В силу ряда причин из ядер, встречающихся в природе, пригодны лишь ядра изотопа урана с массовым числом 235, т.е. 238 92U.
Для течения цепной реакции нет необходимости, чтобы каждый нейтрон обязательно вызывал деление ядра. Необходимо лишь, чтобы среднее число освобожденных нейтронов в данной массе урана не уменьшалось с течением времени.
Это условие будет выполнено, если коэффициент размножения нейтронов k больше или равен единице. Коэффициентом размножения нейтронов называют отношение числа нейтронов в каком-либо «поколении» к числу нейтронов предшествующего «поколения». Под сменой поколений понимают деление ядер, при котором поглощаются нейтроны старого «поколения» и рождаются новые нейтроны.
Если k
1, то число нейтронов увеличивается с течением времени или остается постоянным и цепная реакция идет. При k<1 число нейтронов убывает и цепная реакция невозможна.Коэффициент размножения определяется следующими четырьмя факторами:
1) захватом медленных нейтронов ядрами урана с последующим делением и захватом быстрых нейтронов (также с последующим делением);
2) захватом нейтронов ядрами урана без деления;
3) захватом нейтронов продуктами деления, замедлителем и конструктивными элементами установки;
4) вылетом нейтронов из делящегося вещества наружу.
Лишь первый процесс сопровождается увеличением числа нейтронов (в основном за счет деления 235 92U). Все остальные приводят к их убыли. Цепная реакция в чистом изотопе 23892U невозможна, так как в этом случае k<1 (число нейтронов, поглощаемых ядрами без деления, больше числа нейтронов, вновь образующихся за счет деления ядер).
Для равномерного течения цепной реакции коэффициент размножения нейтронов должен быть ранен единице. Это равенство необходимо поддерживать с большой точностью. Уже при k=1,01 почти моментально произойдет взрыв..
Неуправляемая цепная реакция с большим коэффициентом размножения нейтронов осуществляется в атомной бомбе.
Для того чтобы происходило почти мгновенное выделение энергии (взрыв), реакция должна идти на быстрых нейтронах (без применения замедлителей). Взрывчатым веществом служит чистый уран или плутоний. Чтобы мог произойти взрыв, размеры делящегося материала должны превышать критические. Это достигается либо путем быстрого соединения двух кусков делящегося материала с докритическими размерами, либо же за счет резкого сжатия одного куска до размеров, при которых утечка нейтронов через поверхность падает настолько, что размеры куска оказываются надкритическими.
Рис. 6 Схема атомной бомбы.
То и другое осуществляется с помощью обычных взрывчатых веществ. При ядерном взрыве происходит образование продуктов деления, ядерного синтеза и нейтронной активации.
При делении тяжелых ядер под действием нейтронов образуются сотни различных радионуклидов с разными периодами полураспада. Соотношение продуктов деления зависит от природы делящегося радионуклида и энергии нейтронов. Распределение дочерних продуктов по массовым числам имеет два максимума, находящихся в интервалах 85—105 и 130—150. Реакции ядерного синтеза протекают при взрыве термоядерных боеприпасов. При этом происходит, в частности, слияние ядер дейтерия и трития с образованием альфа-частицы и нейтрона. При взрыве бомбы температура достигает десятков миллионов кельвин. При такой температуре резко повышается давление и образуется мощная взрывная волна. Одновременно возникает мощное излучение. Продукты цепной реакции при взрыве бомбы сильно радиоактивны и опасны для живых организмов.
Атомные бомбы были применены США в конце второй мировой войны против Японии. В 1945 г. Они были сброшены на японские города Хиросима и Нагасаки.
Эти акты массового уничтожения людей не были вызваны военной необходимостью, так как в то время капитуляция Японии уже была предрешена. С созданием ядерного оружия победа в войне стала невозможной. Ядерная война способна привести человечество к гибели, поэтому народы всего мира настойчиво борются за запрещение ядерного оружия. Испытания ядерного оружия в атмосфере стали основным источником искусственной радиоактивности в окружающей среде (до 95%). Выпадения радионуклидов происходили неоднородно по поверхности планеты. Около 76% глобальных выпадений стронция-90 пришлось на северное полушарие, где было проведено 90% от общего числа испытаний. Максимум глобальных выпадений при пришелся на 40-50° с.ш.
При проведении подземных ядерных взрывов большая часть радионуклидов остается в полости взрыва, однако во многих случаях наблюдается выброс в атмосферу радиоактивных газов и других летучих продуктов взрыва.
В термоядерной (водородной) бомбе источником высокой температуры, которая необходима для термоядерного синтеза, служит взрыв атомной бомбы (урановой или плутониевой), помещенной внутри термоядерной. Технические возможности увеличения энергии взрыва этих бомб ничем не ограничены.
Пример цепной реакции : 239 92U → 239 93Np + 0 -1e
239 93Np → 239 94Pu + 0 -1e
Атомный реактор.
Ядра урана, особенно ядра изотопа 235 92U, наиболее эффективно захватывают медленные нейтроны. Вероятность захвата медленных нейтронов с последующим делением ядер в сотни раз больше, чем быстрых. Поэтому в ядерных реакторах, работающих на естественном уране, используются замедлители нейтронов для повышения "коэффициента размножения нейтронов
Рис.7 Атомный реактор.
Основные элементы ядерного реактора: ядерное горючее (235 92U, 239 92Pu, 23892U и др.), замедлитель нейтронов (тяжелая или обычная вода, графит и др.), теплоноситель для вывода энергии, образующейся при работе реактора (вода, жидкий натрий и др.) и устройство для регулирования скорости реакции (вводимые в рабочее пространство реактора стержни, содержащие кадмий или бор — вещества, которые хорошо поглощают нейтроны).
Снаружи реактор окружают защитной оболочкой, задерживающей
γ-излучение и нейтроны. Оболочку выполняют из бетона с железным заполнителем.
Лучшим замедлителем является тяжелая вода. Обычная вода сама захватывает нейтроны и превращается в тяжелую воду. Хорошим замедлителем считается также графит, ядра которого не поглощают нейтронов.
Коэффициент размножения k может стать равным единице лишь при условии, что размеры реактора и соответственно масса урана превышают некоторые критические значения. Критической массой называют наименьшую массу делящегося вещества, при которой может протекать цепная ядерная реакция.
При малых размерах слишком велика утечка нейтронов через поверхность активной зоны реактора (объем, в котором располагаются стержни с ураном).
С увеличением размеров системы число ядер, участвующих в делении, растет пропорционально объему, а число нейтронов, теряемых вследствие утечки, увеличивается пропорционально площади поверхности.
Поэтому, увеличивая размеры системы, можно достичь значения коэффициента размножения k приблизительно равного 1. Система будет иметь критические размеры, если число нейтронов, потерянных вследствие захвата и утечки, равно числу нейтронов, полученных в процессе деления. Критические размеры и соответственно критическая масса определяются типом ядерного горючего, замедлителем и конструктивными особенностями реактора.
Для чистого (без замедлителя) урана 23592U, имеющего форму шара, критическая масса приблизительно равна 50 кг. При этом радиус шара равен примерно 9 см (уран очень тяжелое вещество). Применяя замедлители нейтронов и отражающую нейтроны оболочку из бериллия, удалось снизить критическую массу до 250 г.
Управление реактором осуществляется при помощи стержней, содержащих кадмий или бор. При выдвинутых из активной зоны реактора стержнях k>1, а при полностью вдвинутых стержнях k<1. Вдвигая стержни внутрь активной зоны, можно в любой момент времени приостановить развитие цепной реакции. Управление ядерными реакторами осуществляется дистанционно с помощью ЭВМ.
Аварии.
В настоящее время на дне Атлантического океана покоятся пять погибших атомных подводных лодок (две американских и три отечественных), которые являются потенциальными источниками техногенных радионуклидов. Однако, как показали многолетние наблюдения за затонувшей в Норвежском море АПЛ «Комсомолец», поступление радионуклидов за пределы корпуса лодки происходит крайне медленно, кроме того, многие радионуклиды прочно сорбируются донными осадками, так что серьезной опасности для окружающей среды затонувшие АПЛ, по-видимому, не представляют.
В 1968 г. в 11 км к западу от авиабазы Туле, вблизи побережья Гренландии, произошла катастрофа американского самолета В-52, несущего четыре ядерные боеголовки. В результате взрыва самолета плутоний, содержавшийся в боеприпасах, был перемешан со льдом, а также частично поступил под лед с фрагментами боеголовок. В итоге в донные осадки попало около 1 ТБк плутония. В 1966 г. произошло столкновение в воздухе двух самолетов американских ВВС над побережьем Испании. В результате произошло падение четырех термоядерных бомб: три упали на берег, одна — в Средиземное море. Однако эти инциденты не привели к серьезным последствиям для окружающей среды, поскольку большая часть плутония была удалена в результате своевременных дезактивационных работ.