Смекни!
smekni.com

Философские аспекты применения формальных методов в проектировании кибернетических систем (стр. 4 из 7)

В.А.Штофф в своей книге "Моделирование и философия" говорит о том, что теоретической основой модельного эксперимента, главным образом в области физического моделирования, является теория подобия. Она ограничивается установлением между качественно однородными явлениями, между системами, относящимися к одной и той же форме движения материи. Она дает правила моделирования для случаев, когда модель и натура обладают одинаковой (или почти одинаковой) физической природой.

Но в настоящее время практика моделирования вышла за пределы сравнительно ограниченного круга механических явлений и вообще, отношения системы в пределах одной формы движения материи. Возникающие математические модели, которые отличаются по своей физической природе от моделируемого объекта, позволили преодолеть ограниченные возможности физического моделирования. При математическом моделировании основой соотношения модель - натура является такое обобщение теории подобия, которое учитывает качественную разнородность модели и объекта, принадлежность их разным формам движения материи. Такое обобщение принимает форму более абстрактной теории изоморфизма систем. Особенно важно такое свойство для кибернетических систем, где модель описывает свойства объекта в декларативном порядке, в то время как система реализует описанные свойства и императивном порядке (набор инструкций для процессора и т.п.).

Моделирование и проблема истины.

Интересен вопрос о том, какую роль играет само моделирование, то есть построение моделей, их изучение и проверка в процессе доказательства истинности и поисков истинного знания. Что же следует понимать под истинностью модели? Если истинность вообще - "соотношение наших знаний объективной действительности"‎[1], то истинность модели означает соответствие модели объекту, а ложность модели - отсутствие такого соответствия. Такое определение является необходимым, но недостаточным. Требуются дальнейшие уточнения, основанные на принятие во внимание условий, на основе которых модель того или иного типа воспроизводит изучаемое явление. Например, условия сходства модели и объекта в математическом моделировании, основанном на физических аналогиях, предполагающих при различии физических процессов в модели и объекте тождество математической формы, в которой выражаются их общие закономерности, являются общими, более абстрактными.

Таким образом, при построении тех или иных моделей всегда сознательно отвлекаются от некоторых сторон, свойств и даже отношений, в силу чего, заведомо допускается расхождение между моделью и оригиналом по ряду параметров, которые вообще не входят в формулирование условий сходства. Так планетарная модель атома Резерфорда оказалась истинной в рамках (и только в этих рамках) исследования электронной структуры атома, а модель Дж. Томпсона оказалась ложной, так как ее структура не совпадала с электронной структурой. Истинность - свойство знания, а объекты материального мира не истинны, не ложны, просто существуют. Можно ли говорить об истинности материальных моделей, если они - вещи, существующие объективно, материально? Это связано с другим вопросом: на каком основании можно считать материальную модель гносеологическим образом? В модели реализованы двоякого рода знания:

  1. Знание самой модели (ее структуры, процессов, функций) как системы, созданной с целью воспроизведения некоторого объекта.
  2. Теоретические знания, посредством которых модель была построена.

Имея в виду именно теоретические соображения и методы, лежащие в основе построения модели, можно ставить вопросы о том, на сколько верно данная модель отражает объект и насколько полно она его отражает. (В процессе моделирования выделяются специальные этапы - этап верификации модели и оценка ее адекватности). В таком случае возникает мысль о сравнимости любого созданного человеком предмета с аналогичными природными объектами и об истинности этого предмета. Но это имеет смысл лишь в том случае, если подобные предметы создаются со специальной целью изобразить, скопировать, воспроизвести определенные черты естественного предмета.

Таким образом, можно говорить о том, истинность присуща материальным моделям:

  • в силу связи их с определенными знаниями;
  • в силу наличия (или отсутствия) изоморфизма ее структуры со структурой моделируемого процесса или явления;
  • в силу отношения модели к моделируемому объекту, которое делает ее частью познавательного процесса и позволяет решать определенные познавательные задачи.

"И в этом отношении материальная модель является гносеологически вторичной, выступает как элемент гносеологического отражения"‎[1].

Важнейший аспект, связанный с ролью моделирования в установлении истинности той или иной формы теоретического знания (аксиоматической теории, гипотезы и т.д.). Здесь модель можно рассматривать не только как орудие проверки того, действительно ли существуют такие связи, отношения, структуры, закономерности, которые формулируются в данной теории и выполняются в модели. Успешная работа модели есть практическое доказательство истинности теории, то есть это часть экспериментального доказательства истинности этой теории.

Теперь, когда были рассмотрены основные теоретические аспекты моделей, моделирования, можно перейти к рассмотрению конкретных примеров широкого применения моделирования, как средства познания в области кибернетики.

Имитационное моделирование

По словам крупного ученого в этой области P.Шеннона, "идея имитационного моделирования проста и интуитивно привлекательна, позволяет экспериментировать с системами, когда на реальном объекте этого сделать нельзя."‎[6]. В основе этого метода - теория вычислительных систем, статистика, теория вероятностей, математика.

Все имитационные модели построены по типу "черного ящика", т.е. сама система (ее элементы, структура) представлены в виде "черного ящика"; есть какой-то вход в него, который описывается экзогенными переменными (возникают вне системы, под воздействием внешних причин), и выход (описывается выходными переменными), который характеризует результат действия системы.

В имитационном исследовании большое значение имеет этап оценки модели, который включает в себя следующие шаги:

  1. Верификация модели (модель ведет себя так, как это было задумано исследователем).
  2. Оценка адекватности (проверка соответствия модели реальной системе).
  3. Проблемный анализ (формирование статистически значимых выводов на основе данных, полученных в результате экспериментов с моделью).

Кибернетическом моделирование

В современном научном знании весьма широко распространена тенденция построения кибернетических моделей объектов самых различных классов. "Кибернетический этап в исследовании сложных систем ознаменован существенным преобразованием "языка науки", характеризуется возможностью выражения основных особенностей этих систем в терминах теории информации и управления. Это сделало доступным их математический анализ." ‎[5]

Кибернетическое моделирование используется и как общее эвристическое средство, и как искусственный организм, и как система-заменитель, и в функции демонстрационной. Использование кибернетической теории связи и управления для построения моделей в соответствующих областях основывается на максимальной общности ее законов и принципов: для объектов живой природы, социальных систем и технических систем.

Широкое использование кибернетического моделирования позволяет рассматривать этот "логико-методологический" феномен как неотъемлемый элемент интеллектуального климата" современной науки"‎[5]. В этой связи говорят об особом "кибернетическом стиле мышления", о "кибернетизации" научного знания. С кибернетическим моделированием связываются возможные направления роста процессов теоретизации различных наук, повышение уровня теоретических исследований. Рассмотрим некоторые примеры, характеризующие включение кибернетических идей в другие понятийные системы.

Характеризуя процесс кибернетического моделирования‎[5], обращают внимание на следующие обстоятельства. Модель, будучи аналогом исследуемого явления, никогда не может достигнуть степени сложности последнего. При построении модели прибегают к известным упрощениям, цель которых - стремление отобразить не весь объект, а с максимальной полнотой охарактеризовать некоторый его "срез". Задача заключается в том, чтобы путем введения ряда упрощающих допущений выделить важные для исследования свойства. Создавая кибернетические модели, выделяют информационно-управленческие свойства. Все иные стороны этого объекта остаются вне рассмотрения. На чрезвычайную важность поисков путей исследования сложных систем методом наложения определенных упрощающих предположений указывает P.Эшби. "В прошлом, - отмечает он, - наблюдалось некоторое пренебрежение к упрощениям... Однако мы, занимающиеся исследованием сложных систем, не можем себе позволить такого пренебрежения. Исследователи сложных систем должны заниматься упрощенными формами, ибо всеобъемлющие исследования бывают зачастую совершенно невозможны".

Анализируя процесс приложения кибернетического моделирования в различных областях знания, можно заметить расширение сферы применения кибернетических моделей: использование в науках о мозге, в социологии, в искусстве, в ряде технических наук. В частности, в современной измерительной технике нашли приложение информационные модели. Возникшая на их основе информационная теория измерения и измерительных устройств - это новый подраздел современной прикладной метрологии.