Смекни!
smekni.com

Обоснование основных требований к аппаратуре ингкс и наземной системе регистрации. Экспериментальные исследования по обоснованию основных функциональных узлов и структурного построения аппаратуры ингк (стр. 4 из 7)

Таблица 2 - Основные технические характеристики

аппаратуры ИНГКС ведущих западных фирм.

Фирма Прибор, год разработки Диаметр, длина. Tmax, Pmах Частота
генерации,
выход нейтронов
Зонд, детектор Примечание
Shlumberger GST 1984 г 90 мм,
> 4 м
135 ºC 100 МПа 20 кГц
5´108 н/с
1
NaI(Tl)
Регистрируются полные 256 канальные спектры ГИНР и ГИРЗ
Shlumberger PGT 1985 г 30 ºC, (20 час); 100 ºC (11час.); 100 МПа 20 кГц 1
Ge(Li)
Регистрируются 2 по 4000 канальных спектра ГИНР и ГИРЗ
Halliburton PSGТ 1991 г 92 (98 мм)
5.3 (10.2)
149 оС
103.4 МПа
10 кГц 1
BGO
Регистрируются 4 256 канальных спектра ГИНР и ГИРЗ
Western Atlas (Baker Atlas) MSI C/O Log 1984 г

88,9 мм
4.2 м
135 оС
(9 часов работы), 95 оС (24 часа работы), 100 МПа
20 кГц
2´108 н/с
1 NaI(Tl) Регистрируются полные 256 канальные спектры ГИНР и ГИРЗ; 250 канальный временной спектр

1.2.1. Генераторы нейтронов

Одним из наиболее популярных зарубежных генераторов нейтронов, применяемых в зарубежной аппаратуре ИНК, является генератор фирмы MF Physics Corporation модель A-320. Данный генератор имеет блочную конструкцию и состоит из секции ускорителя диаметром 43 мм, длиной 221.1 см и секции электроники диаметром 32 мм, длиной 131.1 см. Основные технические характеристики генератора: нейтронный поток – 7´107÷1´108 н/с, частота генерации - 10¸20 кГц, длительность импульса - >10 мкс, ток потребления при 25оС - 60мкА, температурный диапазон 0÷150 оС, гарантированный ресурс работы 100 час или 1 год. Секция ускорителя содержит нейтронную трубку, блок высокого напряжения, входной трансформатор источника питания и импульсный трансформатор ионного источника. Отличительной особенностью данного устройства является наличие встроенного микропроцессора, который позволяет управлять режимом работы генератора, для этого секция электроники содержит контроллер нейтронной трубки, контроллер блока высокого напряжения и импульсный генератор управления нейтронной трубкой. Для продажи генератора A-320 в США в марте 1990 г. его цена составляла: 42300 $ - ускорительный блок и 12900 $ - преобразователь высокого напряжения.

1.2.2. Скважинные информационно-измерительные системы, временные режимы, скорости каротажа

На примере каротажной информационно-измерительной системы (ИИС) MSI C/O Log рассмотрим принципы построения зарубежной аппаратуры ИНГКС.

Каротажная система MSI C/O Log содержит нейтронный генератор, который под действием высоковольтного источника ускоряет ионы дейтерия на тритиевую мишень для генерации импульсов нейтронов с энергией 14 МэВ. Источник генерирует нейтроны с частотой 20 кГц. Возникающее гамма-излучение регистрируется высокоразрешающим сцинтилляционным детектором NaI(Tl), который оптически соединен с фотоэлектронным умножителем (ФЭУ). Основное назначение ФЭУ - преобразование энергии фотонов в электрический заряд и выделение на анодной нагрузке импульсов напряжения, амплитуда которых пропорциональна энергии гамма-излучения.

Каротажная система MSI C/O Log включает в себя несколько усовершенствований. Применение в скважинном приборе микропроцессора увеличивает возможности и гибкость системы, позволяя контролировать работу прибора и управлять им по телеметрической линии связи с наземного компьютера. Скважинный многоканальный амплитудный анализатор позволяет преобразовывать электрические импульсы, получаемые с анода ФЭУ, в цифровой код непосредственно в скважине. Применение цифровой телеметрии устраняет потери данных при передаче по каротажному кабелю, в результате чего повысилось разрешение спектров и увеличилась максимальная скорость счета в спектрах ГИНР и ГИРЗ. Дополнительно к регистрации амплитудных спектров ГИНР и ГИРЗ регистрируется 250-канальный временной спектр, который дает информацию о времени жизни тепловых нейтронов в исследуемом интервале.

На рисунке 1.2А изображены временные последовательности излучения и детектирования традиционного прибора MSI С/О. Источник работает с частотой 20 кГц. Так как всё неупругое рассеяние происходит в момент излучения нейтронов, детектор фиксирует импульсы в момент вспышки нейтронов, затем после каждой вспышки в течение до нескольких десятков микросекунд регистрируется гамма-излучение радиационного захвата. Вычитание фонового гамма спектра радиационного захвата из измеренного гамма спектра, зарегистрированного в течение существования неупругого рассеяния, дает в результате искомый спектр гамма-излучения неупругого рассеяния ГИНР (рисунок 1.1).

В системе MSI C/O Log были изменены временные режимы излучения и регистрации относительно традиционного прибора MSI C/O. На рисунке 1.2 показаны временные режимы работы излучателя и приёмника этих систем. Аппаратура MSI C/O Log автоматически контролирует вспышку источника и регулирует положение “неупругого окна” относительно этой вспышки.

Автоматическое отслеживание интенсивности вспышки и более широкое (15 мкс) “неупругое окно”, даёт возможность регистрировать более устойчивые и стабильные спектры ГИНР и ГИРЗ. В дополнении к увеличению “неупругого окна” с 10 до 15 мкс, изменено “окно радиационного захвата”, его ширина увеличена с 7.5 до 35 мкс, позволяя, таким образом, использовать все данные каждого 50 мкс цикла.

Изменение временного режима регистрации привело к увеличению счета при регистрации гамма-квантов радиационного захвата фактически в 4.5 раза (без увеличения интенсивности генератора нейтронов), что снизило ошибку измерения более чем в два раза. Кроме того, дополнительно к определению энергий гамма-квантов в каротажной системе MSI C/O Log регистрируется время прихода каждого гамма-кванта относительно начала нейтронной вспышки с временем разрешения 200 нс, то есть 250-канальный временной спектр, эта возможность одна из отличительных особенностей технологии MSI С/О Log, которая позволяет дополнительно регистрировать интенсивность потока гамма-квантов во времени.

Объединение спектрального анализа и информационно-измерительной системы в скважинной аппаратуре позволяет:

· увеличить разрешение спектров;

· повысить скорости счета регистрации;

· повысить отношение сигнал/шум;

· позволяет контролировать работу электронных трактов скважинного прибора;

· позволяет осуществлять автоматическую подстройку коэффициента усиления спектрометра и обеспечивает линейность энергетической шкалы.

Измеренные первичные спектры регистрируются на магнитный носитель для дальнейшей обработки.

Аппаратура импульсной гамма-спектрометрии (GST) фирмы Shlumberger [5] имеет некоторые особенности системы регистрации. Для того чтобы вклад сигнала пласта в измеряемый спектр был максимальным, в аппаратуре GST задержка в измерении неупругого спектра контролируется контуром обратной связи. Кроме того, в аппаратуре GST измеряется фон для компенсации естественной радиоактивности пласта. В этом режиме измеряется время спада плотности тепловых нейтронов пласта. Хотя при таких низких энергиях существует достаточная плотность гамма-излучения, для повышения статистической точности скорость каротажа должна быть не более 3 м/мин, обычно суммируются зарегистрированные данные нескольких спуско-подъемов, либо измерения делаются неподвижным прибором поточечно в течение нескольких минут.

В программно-управляемом цифровой аппаратуре ИНГКС компании “Halliburton”, фирменное название PSGT, используется высокоэффективный детектор BGO, благодаря повышенной точности обработки данных прибор работает со скоростью втрое выше (5 футов/мин {1.5 м/мин} = 300 футов/час), чем аналогичные приборы (использующих методику С/О), при сохранении статистических характеристик. Временная синхронизация работы прибора и сортировка импульсов выполняются скважинным микропроцессором.

По данным спектра неупругого рассеяния, полученным в 4 стратегически расположенных энергетических окнах (рисунок 1.3), вычисляют отношения С/О и кальция/кремния. Данные 18 окон двух спектров радиационного захвата (спектры CG1 и CG2) суммируются и обрабатываются для получения показателей содержания элементов. В первые 2 мс фоновой паузы проводится измерение сечения захвата пласта, используемые для разделения водоносных и нефтегазоносных зон в случае минерализованных пластовых вод. Прибор PSGT регистрирует 4 спектра по 256 каналов каждый. Спектры дают информацию по следующим процессам:

· неупругое взаимодействие в течение каждого нейтронного импульса (спектр NB);

· радиационный захват между последовательными нейтронными импульсами (спектры CG1 и CG2);

· измерение фона активации в течение длительной паузы после нескольких нейтронных импульсов (спектр BKGD).

Кроме того, в приборе PSGT регистрируются “параметры качества”, которые позволяют вести мониторинг качества функционирования прибора и дают дополнительную информацию для проведения более детального петрофизического анализа.

1.2.3. Метрологическое обеспечение зарубежной спектрометрической аппаратуры

Для наземной калибровки каротажной системы MSI C/O Log используется источник нейтронов Am-Be (америций-бериллий), размещенный в защитном транспортном контейнере скважинного прибора. Контейнер сделан из парафина, заключенного в железную оболочку. Контейнер и источник обеспечивают излучение с известными энергетическими пиками, такими, как фотопик железа с энергией 7.64 МэВ, углерода – 4.43 МэВ и водорода – 2.23 МэВ. Двухточечная система калибровки использует фотопики водорода – 2.23 МэВ и железа – 7.64 МэВ. В настоящее время программная калибровка осуществляется после каротажа в компьютерном центре и, при необходимости, прилагается к спектральным данным, записанным на скважине.