Вплоть до XVIII в. в технике применялись статические и кинематические методы и при этом труд ученых-механиков практически не оказывал влияния на развитие техники. В XVIII в. разделение труда между теорией и практикой сохранилось. Однако в связи с развитием динамики взаимоотношение между прикладной и теоретической механикой начинает изменяться. Именно в XVIII в. произошел первый в истории развития техники случай, когда для решения практических проблем обратились к ученым. В 1742 г. купол Собора св. Павла в Риме дал трещину. Анализ проблемы поручили одному из ведущих римских механиков Жакье и хорватскому физику Бошковичу. После осмотра купола и выяснения причин повреждений было изучено распределение сил в конструкциях купола с помощью применения принципа возможных перемещений к созданной ими динамической модели купола с трещинами: купол был представлен в виде твердых тел, которые могут двигаться относительно трещин.
В связи с первой промышленной революцией, начавшейся в Англии в середине XVIII в., статический и кинематический анализы машин и механизмов не позволяли уже решать все возникающие проблемы. Промышленная революция началась с изобретения в 1735 г. первой технологической машины – прядильной, которая уже заменяла не просто физический труд человека, а его профессиональные умения. Однако эта машина приводилась в действие с помощью животного. Необходим был другой источник движения – двигатель. Универсальный для того момента истории техники двигатель удалось изобрести Дж. Уатту, который через 30 лет после создания прядильной машины получил ряд патентов на устройства, позволяющие «преобразовать» паровую машину в двигатель.
Изобретения Уатта были основаны на кинематических методах. Он впервые применил кривошипно-шатунный механизм для преобразования поступательного движения поршня во вращательное. Затем он применил этот механизм для обратного преобразования движений и придумал способ автоматической подачи пара попеременно то с одной, то с другой стороны поршня. Далее Уатт использовал редуктор для увеличения числа оборотов в 2 раза.
Увеличение числа оборотов массивного маховика привело к необходимости решения сложных динамических проблем. Чтобы паровая машина использовалась в качестве двигателя, ее маховик должен вращаться равномерно, однако неравномерная подача пара в цилиндр и непостоянство его давления не могли этого обеспечить. Так в технике возникла динамическая проблема ускоренного вращения твердого тела. В теории же несколько ранее начал исследовать эту проблему Эйлер.
Между тем Уатт для ее решения сделал выдающееся изобретение: он придумал первый в истории техники автомат. Это был динамический регулятор числа оборотов вала его машины.
Итак, в XVIII в. наметилась тенденция сближения механики как теории и техники. Эта тенденция усилилась в XIХ в. Механика как теория уже становится основой для создания машин, а XIХ век получил название века машин. Изобретение, создание, конструирование их уже опиралось на законы Ньютона, аналитическую механику Эйлера-Лагранжа. Тем самым подтверждались исходные принципы, постулаты, начала теории – практика становится критерием истины.
Законы сохранения. Детальное рассмотрение поведения системы с помощью законов динамики часто бывает настолько затруднительно, что довести решение до конца оказывается практически невозможным или вообще неосуществимым.
Представим, например, что исследуется движение автомобиля, поливающего водой улицу, или поезда, с которого разбрасывается гравий при строительстве железной дороги, или движение ракеты, выбрасывающей струю газа. Во всех этих случаях масса движущихся тел изменяется, поэтому возникают сложности с использованием второго закона динамики.
Часто встречаются важные в научном и техническом отношении проблемы, когда законы сил вообще неизвестны. Именно тогда динамический подход просто неосуществим. Для примера можно привести взрывы - выделение большого количества энергии за короткое время в ограниченном объеме.
Перечисленные и многие другие проблемы решаются на основе принципов (законов) сохранения.
При движении системы ее состояние изменяется со временем. Существуют, однако, такие величины, которые обладают весьма важным и замечательным свойством сохраняться. Среди этих сохраняющихся величин наиболее важную роль играют энергия и импульс. Законы сохранения этих величин имеют, как выяснилось впоследствии, весьма глубокое происхождение, связанное с основными свойствами времени и пространства - однородностью и изотропностью.
Законы сохранения энергии и импульса относятся к числу тех наиболее фундаментальных принципов физики, значение которых трудно переоценить. Роль этих законов особенно возросла после того, как выяснилось, что они далеко выходят за рамки механики и представляют собой универсальные законы природы. Во всяком случае, до сих пор не обнаружено ни одного явления, где бы эти законы нарушались. Они являются одними из тех немногих наиболее общих законов, которые лежат в основе современной физики.
К открытию закона сохранения импульса Декарт (1596-1650) пришел независимо от Ньютона на основе экспериментального исследования удара. Сам же Ньютон считал его простым следствием законов динамики. При этом прикладные и технические проблемы не имели для них какого-либо значения.
Ученым было ясно, что во вращательном движении твердых тел также таится какая-то сохраняющаяся величина. Это следовало из того, например, что планеты, спутники, звезды вращаются миллиарды лет без всякого внешнего воздействия. Однако вплоть до XVIII в. эти проблемы не являлись предметом специальных исследований.
В первой половине XVIII в. Эйлер и Д.Бернулли ввели понятие момента импульса L. Название связано с тем, что для обращающейся вокруг центра материальной точки эта величина равна произведению импульса р = mu на расстояние до центра r , т.е. L = mur . Эйлер опубликовал свой результат в курсе механики в 1736 г., а Д.Бернулли - в 1746 г. в трудах Берлинской Академии Наук. Они доказали, что момент импульса обладает свойством сохранения. Широкое применение технических приложений закона сохранения момента импульса было найдено в ХХ в.
В открытии закона сохранения энергии тесно переплелись и проблемы, имеющие чисто научное, теоретическое происхождение, и проблемы, возникшие при решении практических задач. В качестве примера первой проблемы можно привести трудности «задачи шаров». Опыт показывал, что при упругом ударе двух шаров сохраняется и импульс (m1
1 + m2 2) и кинетическая энергия ( + ), а при неупругом – только импульс.Практическое «происхождение» имело такое основание закона сохранения энергии, как «принцип невозможности вечного двигателя».
В древности мы не встречаем каких-либо попыток создать подобную машину. По-видимому, идея вечного двигателя тогда не являлась актуальной проблемой, поскольку огромная армия рабов давала почти даровую рабочую силу, что вполне удовлетворяло нужды общества того времени.
Первые проекты вечного двигателя относятся к периоду раннего средневековья, к XIII в. В последующие столетия, особенно в период между XIII и XVII вв., было предложено огромное количество проектов вечного двигателя, основанных на применении различных физических явлений и законов.
В XVIII в. число проектов значительно сократилось. По-видимому, многие изобретатели поняли тщетность своих попыток и отказались от них. И все же проектов поступало еще достаточно много. На их рассмотрение научные учреждения того времени вынуждены были отвлекать значительное число ученых, поскольку авторы проектов требовали их подробного разбора и заключения. В конце концов, одно из наиболее авторитетных учреждений - Парижская Академия наук - в 1755 г. объявило, что заявления о вечном двигателе, квадратуре круга и философском камне к рассмотрению приниматься не будут. После этого знаменитого решения Французской Академии наук понадобилось еще 50 лет, пока в середине XIX в. не был установлен закон сохранения энергии.
Самые современные технические идеи, технологии основаны на использовании законов сохранения: это и освоение космического пространства с помощью ракет, и подъем атомной подводной лодки «Курск», и мощные турбины.
Методические рекомендации
Предлагаемый для изучения учебный материал весьма тесно связан с содержанием курса механики основной школы. Поэтому перед учителем прежде всего стоит задача актуализировать знания, полученные учащимися при изучении этого курса, а также создать условия для их обобщения и более глубоко осмысления на основе вновь изучаемых вопросов. Для решения этой задачи учитель может задействовать широкий спектр традиционных для курса физики методических приемов – демонстрация видеофильмов о классических опытах, различных технических устройствах (созданных в прошлые века и современных), макетов машин и механизмов, а также их отдельных частей, доклады учащихся о жизни и деятельности выдающих ученых-физиков и инженеров, решение задач с техническим содержанием.