Смекни!
smekni.com

И. Неудахин вступительный в аспирантуру (стр. 3 из 6)

где N – количество периодов, AHPR – среднее арифметическое HPR (прибыль от сделки), SD – стандартное отклонение HPR.

Подставим вместо AHPR А. Далее, поскольку (X^Y)^Z=X^(Y^Z), мы можем еще более упростить уравнение:

Оценочное TWR = (A^2-SD^2)^(N/2).

Данное последнее уравнение называют фундаментальным уравнением торговли. Оно описывает, как различные факторы: А, SD, N – влияют на результат торговли на рынке.

Достаточно очевидными представляются несколько обстоятельств. Во-первых, если А меньше или равно единице, то при любых значениях двух других переменных наш результат не может быть больше единицы. Если А меньше единцы, то при N, стремящемся к бесконечности, наш результат приближается к нулю. Это означает, что если А меньше или равно 1 (математическое ожидание меньше или равно 0, так как математическое ожидание равно А-1), у нас нет шансов получить прибыль. Фактически, если А меньше 1, то наше итоговое разорение – вопрос времени (т.е. достаточно большого N).

При условии, что А больше 1, с ростом N увеличивается наша прибыль. Например, если среднее арифметическое системы = 1.1, и стандартное отклонение 0.25, то TWR=(1.1^2-0.25^2)^(N/2)=(1.21-0.0625)^(N/2)=1.1475^(N/2).

В этом гипотетическом примере 1.1475^(1/2)=1.071, т.е. каждая следующая сделка, каждое следующее увеличение N на единицу соответствует увеличению нашего счета в 1.071 раза. Это среднее геометрическое. Поскольку каждый раз, когда осуществляется сделка и когда N увеличивается на единицу, коэффициент умножается на среднее геометрическое, мы столкнемся с реальной пользой диверсификации, выраженной математически фундаментальным уравнением торговли. Диверсификация позволяет как бы увеличить N, т.е. количество сделок за определенный период времени.

При рассмотрении фундаментального уравнения торговли мы можем увидеть следующее: очень выгодно уменьшать стандартное отклонение на большую величину, чем AHPR. Для этого необходимо ограничивать размер убытка, быстро закрывая убыточные позиции (собственно говоря, это правильно не только с точки зрения фундаментального уравнения торговли, но и вообще одно из золотых правил успешного трейдинга).

Однако уравнение хорошо тем, что оно показывает: при выборе слишком жесткого уровня защитного стопа вы можете больше потерять. Вас выбьет с рынка из-за слишком большого количества сделок с маленьким проигрышем, которые позднее оказались бы прибыльными, поскольку А уменьшается в большей степени, чем SD. Это обстоятельство (опасность, сопряженная с излишне близкими стопами) прекрасно подтверждается на практике работы многих трейдеров, в том числе автора работы.

Портфель с максимальным геометрическим ростом.

Чтобы геометрический рост портфеля был максимальным или близким к нему, можно объединить идею использования оптимального f с идеей так называемой эффективной границы.

Будем исходить из того, что у нас есть портфель акций, которые куплены не за счет кредита, а полностью на собственные средства. Тогда мы можем вывести эффективную границу портфелей, т.е. из предложенных акций создадим комбинацию, которая будет иметь наименьший уровень ожидаемого риска для данного уровня ожидаемого выигрыша. Эти уровни задаются степенью неприятия риска инвестором.

Как известно, теорию Марковица часто называют теорией E-V (Expected Return-Variance of Return). Входные параметры основаны на данных по прибыли, и, таким образом, входные данные для выведения эффективной границы – это прибыли, которые мы ожидаем по данной акции, и дисперсия, которая ожидается от этих прибылей. Прибыли по акциям определяются, естественно, как размер дивидендов плюс разница от изменения рыночной стоимости в процентах.

Помимо ожидаемой прибыли и ожидаемой дисперсии, для использования данного метода следует рассчитать коэффициенты линейной корреляции прибылей. Эти параметры можно получить эмпирически, путем оценки или с помощью комбинации обоих подходов. Важно только учитывать, что для определения коэффициентов корреляции надо использовать точки данных того же временного периода, который был использован для определения ожидаемых прибылей и дисперсий.

Оптимальным будет портфель, решение которого будет давать самую низкую дисперсию при заданной ожидаемой прибыли.

Линии рынка капитала.

Портфель можно улучшить с помощью инвестирования определенной доли счета в наличные (т.е. беспроцентный вклад). Будем называть линией рынка капитала линию, которая выходит из точки, в которой все средства вложены в безрисковые активы (т.е. точка с низким AHPR и нулевым стандартным отклонением) и касающаяся в одной точке эффективной границы. Ральф Винс полагает, что в точке касания портфель из акций, который мы сформировали, будет очень неплохо диверсифицирован.

Традиционно считается, что большинство разумных инвесторов хочет получить максимальную прибыль при данном риске либо принять наименьший риск при заданной прибыли. Тогда все эти инвесторы желают быть где-то на уровне линии рынка капитала. Т.е. для этих инвесторов, по сути дела, интересен один и тот же по своему составу портфель, только с различной долей заемных средств в нем. Данное различие между инвестиционными решениями и инвестированием с использованием заемных средств известно как теорема разделения.

Тогда мы можем математически определить, где находится данный касательный портфель на эффективной границе для заданной безрисковой ставки.

Касательный портфель = МАХ((AHPR-(1+RFR))/SD), где AHPR – арифметическое среднее прибыли, SD – стандартное отклонение прибыли, RFR – безрисковая ставка.

В этом уравнении формула, которая максимизируется, представляет собой отношение Шарпа: (AHPR-(1+RFR))/SD. Отношение Шарпа для портфеля – это отношение ожидаемых избыточных значений прибыли к стандартному отклонению. Портфель с наибольшим отношением Шарпа и является портфелем, который расположен в точке касания эффективной границы с линией рынка капитала при данной безрисковой ставке.

Оптимальное f и оптимальные портфели.

Современная стратегия создания портфелей состоит, в общих чертах, в том, что для каждого компонента портфеля необходимо определить ожидаемую прибыль в процентах и ожидаемую дисперсию прибылей. В общем случае ожидаемые прибыли и их дисперсии рассчитываются на основе текущей цены акции. Затем для каждого компонента определяется его оптимальный процент. Далее, для расчета суммы инвестиций в тот или иной компонент баланс счета умножается на вес компонента, а затем для определения числа лотов для покупки эта сумма делится на цену лота.

Думается, однако, что такой вариант не является оптимальным. Можно взять вместо ожидаемой прибыли и дисперсии прибыли, определяемых на основе текущей цены, эти же величины, определяемые на основе оптимального f в долларах или рублях. Т.е. в качестве входных данных можно использовать среднее арифметическое прибыли и ее дисперсию. Причем используемые для расчета среднего прибыли должны быть привязаны не к количеству сделок, а к фиксированным интервалам времени.

Тогда дневное HPR=(A/B)+1, А – сумма, выигранная в этот день, В – оптимальное f в используемой вами валюте.

Разумеется, использовать можно не только дневные HPR, но и рассчитывать их для другого интервала времени, но при условии, что этот интервал одинаков для всех компонентов портфеля (тот же временной период должен использоваться для определения коэффициентов корреляции между HPR различных компонентов).

Например, рыночная система с оптимальным f=2000$ за день заработала 100$. Тогда для такой рыночной системы дневное HPR=1,05.

Если рассчитывать оптимальное f на основе приведенных данных, то тогда для получения дневных HPR можно использовать такую формулу:

Дневное HPR=D$/f$+1,

Где D$- изменение цены 1 единицы в долларах по сравнению с прошлым днем, f$ - текущее оптимальное f в долларах.

В соответствии с позицией Ральфа Винса, необходимо учитывать, что те портфели, параметры которых выбраны на основе текущей цены компонента портфеля, не могут называться истинно оптимальными портфелями. Для нахождения истинно оптимальных портфелей предлагается использовать входные параметры, основанные на торговле 1 единицей при оптимальном f для каждого компонента. Нельзя быть ближе к пику кривой оптимального f, чем само оптимальное f. Поэтому при расчете параметров исходя из рыночной текущей цены компонента портфеля, параметр выбирается не совсем строго, что может приводить к отклонениям от истинно оптимального портфеля (это замечание, пожалуй, справедливо, однако надо понимать, что едва ли отклонения, вызванные этим обстоятельством, могут быть существенными).

Для устранения этой неточности вес, который выбирается для каждого из компонентов портфеля, должен быть отражен в оптимальных f этих компонентов портфеля. Для этого необходимо разделить оптимальные f в валюте каждого компонента портфеля на соответствующий вес. Выполняя подобную процедуру, мы, используя новые «отрегулированные» значении f, получим действительно геометрически оптимальный портфель.

На первый взгляд, возможно и весьма обосновано замечание такого рода: если изменить оптимальный портфель посредством оптимального f, то будет ли он оптимальным? Если новые значения относятся к другому портфелю, то ему соответствует другая координата прибыли, и он может не оказаться на эффективной границе.

Все это, конечно, так, однако здесь мы не изменяем значения f. Мы просто сокращаем расчеты, и со стороны может показаться, что происходит изменение f. Мы создаем оптимальный портфель, основываясь на ожидаемых прибылях и дисперсии прибылей при торговле единицей каждого компонента портфеля, а также на коэффициентах корреляции. Так мы получаем оптимальные веса. Поэтому, если рыночная система имеет оптимальное f=2000$ и ее вес в портфеле равен 0.5, мы должны использовать для этой рыночной системы 50% нашего счета. Это то же самое, что и торговать 100% счета при оптимальном f, деленном на оптимальный вес (2000 долларов/0.5=4000 долларов).