На начальной стадии всё вещество Вселенной имело настолько высокую плотность, что её даже невозможно себе представить. Идею о расширении Вселенной из сверхплотного состояния ввёл в 1927 г. бельгийский астроном Жорж Леметр, а предположение, что первоначальное вещество было очень горячим, впервые высказал Георгий Антонович Гамов в 1946 г. Впоследствии эту гипотезу подтвердило открытие так называемого реликтового излучения. Оно осталось как эхо бурного рождения Вселенной, которое часто называют Большим Взрывом.
Теории эволюции Вселенной.
Существовало и существует множество теорий эволюции Вселенной.
1.Теория Вечной Вселенной. Как известно, в звездах идет ядерное сгорание водорода с превращением его в гелий. Не рассматривая здесь других ядерных реакций, которые могут протекать в недрах звезд, скажем, что синтез гелия из водорода является главнейшим источником энергии во Вселенной из числа известных. Возникает вопрос о том, есть ли предел горючему - водороду, насколько долго хватит его? По одной из версий, опирающихся на философские измышления о постоянстве и вечности Вселенной, где-то во Вселенной существуют источники образования водорода, по сути, из ничего. Философские принципы нередко перекликаются с научными. Но одна из главных опор современной научной мысли - законы сохранения - не позволяют большинству ученых принять эту модель вечной Вселенной. Идея о возможности появления чего-то из ничего противоречит научным принципам. Вы в жизни встретите мало приверженцев изложенной гипотезы.
2.Теория пульсирующей Вселенной. По одной из гипотез, расширение Вселенной, которое наблюдается в нынешнее время, впоследствии сменится сжатием. Как считается, это произойдет из-за того, что разлетающиеся галактики замедляют свой бег, тормозясь взаимным гравитационным притяжением. В один из моментов галактики остановятся и начнут вновь сближаться. Кончится все должно тем же, с чего и начиналось: образованием сверхкомпактного объекта и новым Большим взрывом. Таким образом, согласно этой теории, Вселенная пульсирует.
3.Теория горячей Вселенной. По этим представлениям с небольшими модификациями Вселенная сначала представляла из себя одну сингулярную точку, которая по неизвестной причине «взорвалась», получив колоссальный импульс энергии, в результате чего появилась очень горячая Вселенная (Гамов, 1948), заполненная фундаментальными элементарными частицами, разлетающимися в разные стороны рис. 49).
Гипотеза Г. А. Гамова о «горячей вселенной» построена на теории расширяющейся вселенной Фридмана. По Фридману, вначале был взрыв. Он произошёл одновременно и повсюду во Вселенной, заполнив пространство очень плотным веществом, из которого через миллиарды лет образовались наблюдаемые тела Вселенной — Солнце, звёзды, галактики и планеты, в том числе Земля и всё что на ней. Гамов добавил к этому, что первичное вещество мира было не только очень плотным, но и очень горячим. Идея Гамова состояла в том, что в горячем и плотном веществе ранней Вселенной происходили ядерные реакции, и в этом ядерном котле за несколько минут были синтезированы лёгкие химические элементы. Самым эффектным результатом этой теории стало предсказание космического фона излучения (реликтовое излучение [42}). Электромагнитное излучение должно было, по законам термодинамики, существовать вместе с горячим веществом в «горячую» эпоху ранней Вселенной. Оно не исчезает при общем расширении мира и сохраняется (сильно охлаждённым) и до сих пор. Гамов и его сотрудники смогли ориентировочно оценить, какова должна быть сегодняшняя температура этого остаточного излучения. У них получалось, что это очень низкая температура, близкая к абсолютному нулю. С учётом возможных неопределённостей, неизбежных при весьма ненадёжных астрономических данных об общих параметрах Вселенной как целого и скудных сведениях о ядерных константах, предсказанная температура должна была лежать в пределах от 1 до 10 К. В 1950 году в одной научно-популярной статье (Physics Today, № 8, стр. 76) Гамов объявил, что скорее всего температура космического излучения составляет примерно 3 К (сегодня определено как 2,725 К [60])
4.Теории инфляции Вселенной. Центральной идеей этих моделей является предположение о чрезвычайно быстром раздувании (инфляции) Вселенной в первые мгновения после Большого Взрыва. Модель инфляции Вселенной в первые мгновения после Большого Взрыва позволила решить некоторые проблемы модели горячей Вселенной:благодаря крайне высоким темпам расширения на инфляционной стадии разрешается проблема крупномасштабной однородности и изотропности Вселенной: весь наблюдаемый объём Вселенной оказывается результатом расширения единственной причинно связанной области доинфляционной эпохи, на инфляционной стадии радиус пространственной кривизны увеличивается настолько, что современное значение плотности автоматически оказывается весьма близким к критическому, то есть разрешается проблема плоской Вселенной, в ходе инфляционного расширения должны возникать флуктуации плотности с такой амплитудой и формой спектра (т. н. плоский спектр возмущений), что в результате возможно последующее развитие флуктуаций в наблюдаемую структуру Вселенной при сохранении крупномасштабной однородности и изотропности, то есть разрешается проблема крупномасштабной структуры Вселенной.
Модель горячей Вселенной и все модели инфляции отличаются только деталями начальной стадии эволюции Вселенной (стадия инфляции). В остальном они подобны. Ранняя Вселенная представляла собой однородную и изотропную среду из фундаментальных элементарных частиц с необычайно высокой плотностью энергии, температурой и давлением и очень быстрым расширением (раздуванием, инфляцией). Плотность энергии, температура и давление определяются их носителями (переносчиками). Не может быть температуры без каких-либо тел, потому что температура является эквивалентом скорости движения какого либо тела (корпускулы, элементарной частицы, атома, молекулы). То же касается энергии и давления. Поэтому, вероятно, первыми из сингулярной точки появились фундаментальные элементарные частицы и они были теми первичными носителями температуры, энергии и давления. Эти же частицы определили и пространство, которое они занимали в то время.Предполагается, что после окончания периода инфляции строительный материал Вселенной представлял собой кварк-глюонную плазму.
5.Эруптивные теории (теории распада). К ним относятся теории, разработанные армянской школой астрономии, основанной академиком Амбарцумяном В.А., который разработал новую гипотезу о дозвёздной материи, имеющую принципиальное значение. В отличие от классической (дисперсной) гипотезы, согласно которой звёзды формируются в результате конденсации (сгущения) ранее дисперсной диффузной материи из первичных элементарных частиц, новая гипотеза исходила из представления о существовании массивных тел — протозвёзд неизвестной природы, в результате распада которых формируются звёзды в ассоциациях. Ему принадлежит понятие об активных телах незвездной природы, входящих в состав ядер некоторых типов галактик. Его последователи, Маркарян Б.Е., Товмасян Г., Хачикян Э., Аракеляном М. и др., путем наблюдений ультрафиолетового и радиоизлучения ядер галактик, полностью подтвердили мировоззрения Амбарцумяна В.А.
Эти теории хорошо согласуются с данными наблюдений за сверхдалекими объектами нашей Вселенной, отстоящих от нас на расстояниях и, следовательно, времени своего существования, на многие миллиарды лет, то есть, почти в самом начале времен.
Квазары являются наиболее характерными объектами, наполнявшими Вселенную около 10 млрд лет назад. До недавнего времени в звездной астрономии считалось, что масса звезд не может превосходить массу Солнца более чем в 100 раз. В противном случае звезда окажется неустойчивой и распадется. Однако, Хойл и Фаулер предположили, что временами внутри ядер галактик, вследствие сгущения межзвездного газа, могут возникать «сверхзвезды» с массами, превосходящими солнечную в сотни тысяч и даже сотни миллионов раз.
Согласно первоначальной идее Хойла и Фаулера сверхзвезды образуются в результате сгущения межзвездного газа. Но дело в том, что сжатие очень больших газовых масс, происходящее под действием собственной гравитации, как показал академик Я. Б. Зельдович, может при определенных условиях происходить без задержки. Повышение температуры и давления внутренней зоны такого сгустка оказывается недостаточным, чтобы воспрепятствовать дальнейшему сжатию. Происходит так называемый гравитационный коллапс—неудержимое сжатие всей массы газа. Любопытно, что масса вещества, принимающего участие в гравитационном коллапсе, должна составлять 107—108 солнечных масс. В результате появляются так называемые черные дыры – массивные тела, во много раз превосходящие массу Солнца, но сколлапсировавшие в сингулярную точку.
Квазары, возможно являются черными дырами, но по какой-то пока неясной причине, в них происходит процесс антиколлапса – генерация и выделение больших масс вещества. На это же указывает большое сходство квазаров с ядрами спиральных и некоторых других галактик. Известно, что ядра спиральных галактик выделяют огромные массы газа, который сгущаясь образует звезды и из этих звезд образуются звездные рукава галактик. Эти рукава потому и закручены в виде спирали, потому что ядро галактики (квазар) вращается вокруг своей оси и звезды, имея центростремительное движение и постоянную линейную скорость движения, которую они получили в момент их образования возле ядра, постепенно уменьшают свою угловую скорость, удаляясь от центра галактик. В любом случае спиральность рукавов галактик указывает на происхождение звезд из вращающегося ядра галактик, которым является квазар.На еще большем удалении от нас, т.е., еще ближе к моменту Большого Взрыва, не видно уже никаких образований и тел типа квазаров, галактик или звезд, хотя в инфракрасном диапазоне видны гигантские неоднородности излучения, которые принимают за скопления звезд первого поколения.