Смекни!
smekni.com

Периодичность в развитии естествознания (стр. 2 из 2)

Возникновение нового метода исследования – научного эксперимента оказало огромное влияние на дальнейшее развитие науки.

Основные естественнонаучные революции и их характер

В истории естествознания процесс накопления знаний сменял­ся периодами научных революций, когда происходила ломка ста­рых представлений и взамен их возникали новые теории.

Крупные научные революции связаны с такими достижения человеческой мысли, как:

- учение о гелиоцентрической системе мира Н. Копер­ника,

- создание классической механики И. Ньютоном,

- ряд фунда­ментальных открытий в биологии, геологии, химии и физике в первой половине XIX столетия, подтвердившие процесс эволю­ционного развития природы и установившие тесную взаимосвязь многих явлений природы,

- крупные открытия в нача­ле XX столетия в области микромира, создание квантовой меха­ники и теории относительности.

Рассмотрим эти основные достижения.

R Польский астроном Н. Коперник в труде «Об обращении не­бесных сфер» предложил гелиоцентрическую картину мира вмес­то прежней птолемеевой (геоцентрической). Она явилась продол­жением космологических идей Аристотеля, и на нее опиралась религиозная картина мира. Заслуга Н. Коперника состояла также в том, что он устранил вопрос о «перводвигателе» движения во Вселенной, так как, согласно его учению, движение является есте­ственным свойством всех небесных и земных тел. Вполне понятно, что его учение не соответствовало мировоззрению католической церкви, и с этого времени начинается противостояние науки и церкви по главным вопросам, касающимся природы.

«Трудно переоценить значение и влияние гелиоцентрической кар­тины мира на все естественные науки. Это было поистине яркое событие в истории естествознания: вместо прежнего неверного каркаса мироздания была введена истинная система координат околоземного космоса»[2].

R Сравнимые по масштабу перемены в теоретической физике произошли в XVII в. Был осуществлен переход от аристотелевой физики к ньютоновой, которая господствовала в западной науке в течение трех столетий. Используя эту модель, физика достигла прогресса и выгодно отличалась от других дисциплин. Ее законы приобрели математическую формулировку, она доказала свою эф­фективность при решении многих проблем. С тех пор западная наука добилась крупных успехов и стала мощной силой, преобразую­щей мир. К тому же она определенным образом формировала ми­ровоззрение ученых. Вступала в силу механистическая картина мира.

R Говоря о создании механики Ньютоном, нельзя не упомянуть имя Галилео Галилея, который стоял у ее истоков. Его принцип инерции был крупнейшим достижением человеческой мысли: предложив его миру, он решил фундаментальную проблему — проблему движения. Уже одного этого открытия было бы достаточно для того, чтобы Галилей стал выдающимся ученым Нового времени.

Однако его научные результаты разнообразны и глубоки. Он исследовал свободное падение тел и установил, что скорость сво­бодного падения тел не зависит от их массы (в отличие от Арис­тотеля) и траектория брошенного тела представляет собой пара­болу. Известны его астрономические наблюдения Солнца, Луны, Юпитера. В работе «Диалог о двух системах мира — Птолемеевой и Коперниковой» он доказал правильность гелиоцентрической кар­тины мира, утверждению которой способствовали передовые уче­ные того времени.

R Первый закон механики Ньютона — это принцип инерции, сформулированный Галилеем. Во втором законе механики Ньютон утверждает, что ускорение, приобретаемое телом, прямо пропор­ционально приложенной силе и обратно пропорционально массе этого тела. И третий закон механики Ньютона есть закон действия и противодействия: действия двух тел друг на друга всегда равны по величине и противоположны по направлению. И еще один за­кон, предложенный Ньютоном, закон всемирного тяготения, зву­чит так: все тела взаимно притягиваются прямо пропорционально их массам и обратно пропорционально квадрату расстояния между ними. Это — универсальный закон природы, на основе которого была построена теория Солнечной системы.

«Механика Ньютона поражает своей простотой. Она имеет дело с материальными точками и расстояниями между ними и, таким образом, является идеализацией реального физического мира. Но благодаря этой простоте стало возможным построение замкнутой механической картины мира. Его теория использовала строгий матема­тический аппарат и опиралась на научный эксперимент. Именно такая тенденция наметилась в физике после его работ»[3].

Благодаря трудам Галилея и Ньютона XVIII век считается на­чалом того длительного периода времени, когда господствовало механистическое мировоззрение.

R Развитие биологии в XVIII веке также не обходилось без революционных открытий в то время шло своим путем:

Þ Г. Мендель (1822-1884) от­крыл законы наследственности, скрещивая семена гороха в тече­ние восьми лет.

Þ Исследуя бактерии, Л. Пастер показал, что они присутствуют в атмосфере, распространяются капельным путем и их можно разрушить высокой температурой. В XIX в. микробиоло­гия помогала побеждать инфекционные болезни.

Þ Итогом раз­вития эволюционной концепции стала работа Ч. Дарвина (1809— 1882) «Происхождение видов путем естественного отбора» (1859). Эта теория имела такое же влияние на умы людей, какое в свое время имела теория Коперника. Это была научная революция в области биологии. Можно сказать, что коперниковская революция указала место человека в пространстве, а теория Дарвина опреде­лила место человека во временной шкале мира.

R Следующая научная революция, после которой резко измени­лась система взглядов и подходов, также связана с физикой. Это произошло в конце XIX — начале XX столетия. Толчком к построению новой физической картины мира послужил ряд новых эксперименталь­ных фактов, которые не могли быть описаны в рамках старых тео­рий, как это обычно бывает в науке. К таким фактам относятся прежде всего:

- исследования Фарадея по электрическим явлениям,

- работы Максвелла и Герца по электродинамике,

- изучение явле­ния радиоактивности Беккерелем,

- открытие первой элементарной частицы (электрона) Томсоном и т.д.

Проникая в область микромира, физики столкнулись с неожи­данными проявлениями физической реальности, для описания которой возникла потребность в новой теории, ибо сделать это с помощью классической механики не удавалось. Поэтапно, благодаря работам ряда физиков и глав­ным образом Бора, Гейзенберга, Шредингера, Планка, де Бройля и других, была построена физическая теория микромира, создана кван­товая механика. Согласно этой теории, движение микрочастиц в пространстве и времени не имеет ничего общего с механическим движением макрообъектов и подчиняется соотношению неопреде­ленностей: если известно положение микрочастицы в пространстве, то остается неизвестным ее импульс и наоборот.

R В 1905 г. А. Эйнштейн создал специальную теорию относитель­ности, в которой свойства пространства и времени связаны с ма­терией и вне материи теряют смысл. Эта теория дает преобразова­ние пространственных и временных координат тел, которые дви­гаются со скоростями, сравнимыми со скоростью света. Вторая часть теории, которая называется общей теорией относительнос­ти, связывает присутствие больших гравитационных полей (или массы) с искривлением пространства. Эта часть теории использу­ется в космологических моделях.

Заключение

Итак, историческое развитие человечества постоянно сопровождалось развитием науки.

Ученые, внесшие свой вклад в развитие науки, были яркими личностями - они сочетали в себе профессио­нальные качества в своей области с высокой культурой духа. Новые теории строились на основе не только строгого разума, но и высо­кой степени интуиции.

С тех пор прошло уже много времени. Современная наука быстро прогрессирует и научные открытия совершаются на наших глазах. Современное естествознание представляет собой сложную, развет­вленную систему множества наук. Ведущими науками XX в. по праву можно считать физику, биологию, науки о космосе, прикладную математику (неразрывно связанную с вычислитель­ной техникой и компьютеризацией), кибернетику, синергети­ку.

Но не только последние научные данные можно считать современными, а все те, которые входят в толщу современной науки, образуя ее краеугольные камни, поскольку наука не состоит из отдельных, мало связанных между собой теорий, а представляет собой во многом единое целое, состоящее из разновременных по своему происхождению частей.

Список используемой литературы

1. Горелов А.А. Концепция современного естествознания. - М.: ЦЕНТР, 2000.

2. Данилова B.C., Кожевников Н.Н. Основные концепции современного естествознания. — М.: Аспект Пресс, 2000.

3. Кокин А.В. Концепции современного естествознания. – М.: «ПРИОР», 1998.

4. Концепции современного естествознания /Под ред. В.Н. Лавриненко, В.П. Ратникова. — М.: ЮНИТИ-ДАНА, 2000.

5. Кун Т. Структура научных революций. - М., 1975.

6. Мотылева Л.С. и др. Концепции современного естествознания. — Спб.: Союз, 2000.

7. Пуанкаре А. О науке. – М., 1983.

8. Селье Г. От мечты к открытию. – М., 1987.

9. Солопов Е.Ф. Концепции современного естествознания. — М.: Гуманит. изд. центр ВЛАДОС, 1998.


[1] Кун Т. Структура научных революций. - М., 1975 г., с. 65.

[2] Кун Т. Структура научных революций. - М., 1975 г., с. 66.

[3] Данилова B.C., Кожевников Н.Н. Основные концепции современного естествознания: Учебн. пособие для вузов. — М.: Аспект Пресс, 2000. — с. 44.