Особое затруднение и даже вопросы во время проведения экзамена вызвало задание на нахождение значения выражения: «Найдите значение выражения,
, если 4 =0,7». Заметим, что преобразования выражения здесь не представляют никаких проблем для хорошо подготовленных выпускников, так как в явном виде под корнем записан квадрат двучлена ( ).Основная проблема возникла при раскрытии модуля и определении знака значения выражения, стоящего под знаком модуля (
или ). Затруднение вызвало применение условия для ответа на поставленный вопрос.Очевидно, что при выполнении приведенных выше заданий хорошо подготовленный выпускник должен был показать не только знание известных методов решения уравнений или преобразования выражений, но и умение проанализировать условие, соотнести данные и требования задания, вывести из условия различные следствия и т.п., то есть показать определенный уровень развития математического мышления.
Таким образом, при обучении хорошо успевающих учащихся нужно не только позаботиться об усвоении базовой составляющей курса алгебры и начал анализа, (усвоение изученных правил, формул, методов), но и о реализации одной из главных целей обучения математике – развитию мышления учащихся, в частности, математического мышления.
Отдельные критики проведения итоговой аттестации в форме ЕГЭ были серьёзно озадачены тем, что именно эта составляющая математической подготовки почти не проверяется заданиями, включенными в варианты КИМ. Однако опасения оппонентов явно не оправданны. Анализ вариантов КИМ, неоднократно выполненный представителями школьного математического сообщества (учителями, методистами, преподавателями педагогических вузов и т.п.), убедительно показывает, что задания повышенного (а тем более высокого) уровня сложности в полной мере проверяют такие качества мышления учащихся, как глубину, гибкость, самостоятельность и т.п. Но именно в этом и состоят проблемы в организации обучения школьных «хорошистов» и «отличников». Для их решения учителям нужно организовать целенаправленную работу на уроках математики. Очевидно, что учителям математики не отведут специального времени (или специальных уроков) на формирование математического мышления, поэтому данную проблему нужно решать на каждом уроке.
Как отмечают специалисты, одним из основных путей развития мышления является решение проблемных задач. В этой связи встают два вопроса, какие задачи можно считать проблемными, как органично включать проблемные задачи в учебный материал по курсу алгебры и начал анализа? Постараемся ответить на эти вопросы. К проблемным задачам обычно относят те задачи, в которых
– предполагается перестройка знакомых (изученных) способов решения,
– проводится выбор рационального способа решения из возможных способов,
– применяются известные методы для решения новых задач,
– применяются изученные факты для решения реальных жизненных проблем и т.п.
Как видно из приведенных выше признаков проблемных задач, на уроках математики при изучении любой темы имеется реальная возможность включать такие задачи в учебный процесс, разрабатывая индивидуальный вектор подготовки (процесса обучения) учащихся, претендующих на хорошую или отличную оценку.
Приведем несколько примеров, используя задания, представленные в КИМ–2007. В разделе «Тригонометрия» рассматривается решение систем двух уравнений, одно из которых - тригонометрическое уравнение. В учебниках и пособиях для подготовки к экзаменам имеется много трудных, содержащих громоздкие преобразования и вычисления заданий, где требуется решить подобные системы. В КИМ-2007 в Части 2, где расположены задачи повышенного уровня сложности, была предложена следующая система:
«Найдите значение выражения
, если известно что ».Очевидно, что по своему внешнему виду система, вполне «привлекательна» для выпускников, поскольку она решается стандартным способом. Вместе с тем, если выпускник обратит внимание на необычное (нестандартное) требование задания, то для ответа на поставленный вопрос (при рациональном способе решения) он должен перестроить изученный способ решения. Таким образом, данную задачу с полным основанием можно отнести к проблемной.
Заметим, что такие задания учитель может составить самостоятельно и активно включать в учебный процесс, так как они органично ложатся в канву изучаемого материала, а решение подобного задания способствует формированию гибкости мышления.
Рассмотрим другой пример: «Функция
определена на промежутке . На рисунке изображен график производной этой функции. Укажите абсциссу точки, в которой касательная к графику функции имеет наименьший угловой коэффициент».Очевидно, что это задание проверяет понимание геометрического смысла производной, т.е. элемента содержания, который обычно контролируется в школе. Однако оно сформулировано в несколько необычной форме: производная и ее характеристики (значения) представлены графически. Ученик, выполняя это задание, должен по графику увидеть наименьшее значение производной (наименьший угловой коэффициент касательной) и определить соответствующее значение аргумента. Обычно подобное задание предлагают выполнить аналитически: с помощью формулы задается функция, находится ее производная и значение в заданной точке. В рассмотренном «графическом» формате выпускнику не нужно знать формулу производной, вычислять ее значение в некоторой точке и т.д. В таком контексте задание менее сложно, чем представленное аналитически. Здесь в явном виде проверяется владение геометрическим смыслом производной (
). Однако с подобным заданием справляется менее трети выпускников, т. е. задание оказывается более трудным.Если задуматься над тем, можно ли отнести предложенную задачу к проблемным, то ответ, по-видимому, будет однозначным.
Таким образом, очевидно, что при подборе соответствующих задач уроки математики обладают большими потенциальными возможностями для развития мышления учащихся, а целенаправленная работы в этом направлении будет способствовать повышению качества математической подготовки учащихся, получающих школьные оценки «4» и «5».
Геометрия
Как и в предыдущие годы, по геометрическим заданиям повышенного уровня сложности в 2007 году получены низкие результаты – от 2% до 27% верных ответов по вариантам КИМ. Интересно отметить, что с этими задачами справляется лишь категория учащихся с «высокой» математической подготовкой. По подавляющему большинству задач правильные ответы получили более 60% таких учащихся. Из учащихся с хорошей математической подготовкой (годовая оценка по предмету «4») менее 20% успешно решали эти задачи.
Отсюда очевидно, что при сдаче ЕГЭ геометрические задачи дают возможность отобрать самых подготовленных по математике учащихся. С другой стороны, такие низкие результаты могут говорить о неблагополучном положении с геометрической подготовкой учащихся в средней школе. Проанализируем причины таких результатов.
Следует отметить, что в экзаменационной работе задачи по геометрии предназначены даже не для школьных пятерочников, а для абитуриентов тех вузов, где в состав приемных экзаменов входит математика. Результаты выполнения геометрических заданий не учитываются при выставлении аттестационной оценки. Поэтому, как показывает опыт проведения ЕГЭ, учащиеся с «низкой» математической подготовкой, а также многие учащиеся с «хорошей» подготовкой, которым не нужно сдавать математику для поступления в вуз, даже не приступают к решению геометрических задач. Кроме того, из тех учащихся, кто приступает к решению, только около трети получают верный ответ по большинству стереометрических задач, а по планиметрии доля верных ответов еще меньше.
Чтобы выдвинуть обоснованные предположения о причинах неуспеха при решении задач, надо принять во внимание характерные особенности геометрических задач, включавшихся в варианты ЕГЭ.
1. Все эти задачи – вычислительные. Это значит, что для успешного решения должен быть отработан аппарат стандартных вычислений. В большинстве задач применяются теорема Пифагора, определения синуса, косинуса и тангенса острого угла, теорема косинусов (реже – синусов), требуется вычислить элементы подобных треугольников.
2. Несмотря на то, что задачи вычислительные, для их решения важно владение теоретическим материалом. Хотя от учащихся и не требуется умение грамотно записывать решение и приводить обоснования, но необходимо владеть свойствами заданных плоских и пространственных фигур на уровне применения этих свойств для проведения вычислений и, что очень важно, для распознавания различного вида фигур.