Смекни!
smekni.com

Методическое письмо «Об особенностях преподавания математики в о бщеобразовательных учреждениях в 2009 2010 учебном году» (стр. 5 из 7)

• Приказ МО РФ № 1089 от 05.03. 2004 г. «Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования»;

• Стандарт общего образования по математике; [Электронный ресурс]: Профильное обучение в старшей школе. Режим доступа: http://www.profile-edu.ru/;

• [Электронный ресурс]: Портал Министерства образования РФ. Режим доступа: http://www.ed.gov.ru/;

• Стандарт среднего (полного) общего образования по математике на базовом уровне; [Электронный ресурс]: Профильное обучение в старшей школе. Режим доступа: http://www.profile-edu.ru/ [Электронный ресурс]: Портал Министерства образования РФ. Режим доступа: http://www.ed.gov.ru/;

• Стандарт среднего (полного) общего образования по «Математике» на профильном уровне; [Электронный ресурс]: Профильное обучение в старшей школе. Режим доступа: http://www.profile-edu.ru/; [Электронный ресурс]: Портал Министерства образования РФ. Режим доступа: http://www.ed.gov.ru/;

• Примерная программа по математике [Электронный ресурс]: Портал Министерства образования РФ. Режим доступа: http://www.ed.gov.ru/;

• Требования к оснащению образовательного процесса в соответствии с содержательным наполнением стандартов по «Математике» [Электронный ресурс]: Портал Министерства образования и науки РФ. Режим доступа http://www.mon.gov.ru/;

• Элективные курсы при профильном обучении: Образовательная область «Математика»/ МО РФ - Национальный фонд подготовки кадров. - М.: Вита-Пресс, 2007.

Формат нового ФБУП предоставляет большие возможности для реализации вариативности образования. Эти возможности необходимо использовать для организации математического образования. Поскольку математика является системообразующим предметом, итоговая аттестация по которому в форме ЕГЭ обязательна для всех учащихся, необходимо ответственно подойти к распределению вариативной части РБУПа.

В 2009 году единый государственный экзамен был переведён в штатный режим. В связи с этим в нормативные документы, регламентирующие разработку содержания и проведение экзамена, были внесены определенные изменения.

Прежде всего, итоговая аттестация в 11 классах общеобразовательной школы в 2009 году проводилась по математике, а не по курсу «Алгебра и начала анализа», как это было ранее.

Обязательный экзамен по математике сдавали выпускники, которые изучали математику в объеме пяти и более часов в неделю, а также те выпускники, которые изучали математику в объеме четырех часов в неделю. Причем все учащиеся сдавали ЕГЭ по математике по единым текстам вариантов КИМ. Для того чтобы предоставить выпускникам, изучавшим математику в разном объеме, возможность показать достигнутые ими результаты обучения, была проведена корректировка содержания заданий КИМ-2009.

По сравнению с 2008 годом структура вариантов КИМ не была изменена. Но в связи с изменением назначения единого государственного экзамена, было подвергнуто корректировке назначение и содержание частей работы.

Назначение единого государственного экзамена определяла специфику содержания экзаменационной работы. Аттестация выпускников школы по курсу математики и требования вступительных экзаменов в вузы обусловила необходимость включения в работу достаточно большого числа заданий по математике. Таким образом, обязательной проверке подлежал материал всех блоков, по которым распределено содержание школьного курса математики: «Выражения и преобразования», «Уравнения и неравенства», «Функции», «Числа и вычисления», «Геометрические фигуры и их свойства. Измерение геометрических величин».

В соответствии с принятой структурой и содержанием работы Часть 1 КИМ-2009 содержала 13 заданий (А1–А10, В1–В3), составленных на материале курсов алгебры 7-11 кл. и геометрии 7-11 кл. Эти задания обеспечили достаточную полноту проверки овладения материалом этих курсов на базовом уровне. При их выполнении от учащегося требовалось применить свои знания в знакомой ситуации.

Результаты выполнения заданий Части 1 позволили оценить уровень базовой подготовки учащихся по курсу математики.

Часть 2 включала 10 заданий (В4–В11, С1, С2) повышенного (по сравнению с базовым) уровня, при решении которых от учащегося требовалось применить свои знания в измененной ситуации, используя при этом методы, известные ему из школьного курса. Содержание этих заданий отвечало как минимуму содержания основной и средней (полной) школы, так и содержанию, предлагаемому на вступительных экзаменах в вузы.

Часть 3 включала три задачи высокого уровня сложности (С3 и С5 – алгебраические, С4 – геометрическая), при решении которых учащимся надо было применить свои знания в новой для них ситуации.

Результаты выполнения заданий Частей 2 и 3 позволили осуществить последующую, более тонкую дифференциацию выпускников по уровню математической подготовки. Предполагается, что на этой основе вузы смогут осуществить объективный и обоснованный отбор наиболее подготовленных абитуриентов для зачисления в вузы.

За верное выполнение всех заданий работы можно было максимально получить 37 первичных баллов. На основании числа первичных баллов, полученных за выполнение всех заданий работы, определялось, прошел ли учащийся нижнюю границу, необходимую для получения удовлетворительной оценки при сдаче выпускного экзамена по курсу математики.

Таким образом, при сохранении в целом модели вариантов КИМ 2005-2008 гг. в содержание заданий КИМ 2009 были внесены следующие изменения:

– в Часть 1 включены несколько заданий базового уровня, позволяющих оценить умение учащихся применять полученные знания по алгебре и по геометрии в ситуации, близкой к реальной (задания А7, В3, Демонстрационный вариант 2009 г);

– упрощено несколько заданий базового уровня сложности в Части 1;

– с учетом уровня подготовки тех выпускников, которые изучали курс математики в объеме 4 ч в неделю, отобраны по тематике и основным видам математической деятельности задания повышенного уровня сложности в Части 2 (задания В4, В6);

– упрощено одно из трех заданий высокого уровня сложности, осуществляющих более тонкую дифференциацию выпускников, имеющих высокий уровень математической подготовки.

Учителю при организации подготовки учащихся к ЕГЭ рекомендуется обратить внимание на типичные ошибки, допускаемые учениками при выполнении заданий КИМ в логике их соотнесения к соответствующему содержательному блоку школьного курса математики.

Выражения и их преобразования.

Все варианты КИМ традиционно включают в себя задания на тождественные преобразования выражений, содержащих корни, степени с рациональными показателями, логарифмы, тригонометрические функции. В каждой из трех частей работы необходимо проводить различные по сложности преобразования выражений.

В заданиях Части 1 традиционно проверяется владение каким-либо одним из изученных свойств или правил действий. Заметим, что эти задания соответствуют базовому уровню и тем задачам, которые представлены во всех действующих учебниках по математике.

Естественно, что тождественные преобразования выражений различного вида являются составным элементом решения других заданий повышенного уровня Части 2 и высокого уровня Части 3.

Типичные ошибки, которые допускают учащиеся при выполнении заданий этой содержательной линии:

1) Ошибки при выполнении арифметических действий (в течение ряда лет отмечается недостаточно прочное овладение учащимися вычислительными навыками, что проявляется при выполнении действий со степенями и нахождении значения различного вида выражений).

2) Ошибки применения понятия степени с рациональным показателем, незнание свойств степени и корня.

3) Ошибки применения понятия и свойств логарифмов.

4) Плохое усвоение базовых тригонометрических формул.

Уравнения и неравенства

Материал этого раздела традиционно представляется достаточно широко во всех частях вариантов КИМ. Это иррациональные, показательные, логарифмические и тригонометрические уравнения, а также уравнения смешанного типа или комбинированные. Кроме того, в вариантах ЕГЭ предлагается ряд заданий на исследование функций, при выполнении которых требуется решить различные уравнения и неравенства.

Типичные ошибки, которые допускают учащиеся при выполнении заданий этой содержательной линии:

1) При решении показательных уравнений и неравенств допускаются ошибки при выполнении тождественных преобразований степеней с различными основаниями; при вынесении общего множителя за скобку; в смене знака при переходе к линейному неравенству в случае, когда основание степени меньше 1; вычислительные ошибки.

2) При решении логарифмических уравнений и неравенств допускаются ошибки при выполнении тождественных преобразований с использованием свойств логарифма; в смене знака при переходе к линейному неравенству в случае, когда основание логарифма меньше 1; при отборе корней не учитывается область определения логарифмической функции; вычислительные ошибки.

3) При решении иррациональных уравнений большинство выпускников правильно находят корни уравнения, но не производят отбор корней; допускают ошибки при выборе метода решения.

Типичные ошибки при решении заданий повышенного уровня:

1) Основная ошибка связана с неумением школьников переформулировать задание с необычным условием. Учащиеся просто приравнивают оба выражения к нулю, решая тем самым совершенно другую задачу.